RS Aggarwal Quantitative Aptitude PDF Free download: SQUARE ROOTS AND CUBE ROOTS

Contents [hide]



SQUARE ROOTS AND CUBE ROOTS

IMPORTANT FACTS AND FORMULAE

Square Root: If x2 = y, we say that the square root of y is x and we write, √y = x.

Thus, √4 = 2, √9 = 3, √196 = 14.

Cube Root: The cube root of a given number x is the number whose cube is x. We denote the cube root of x by 3√x.

Thus, 3√8  = 3√2 x 2 x 2 = 2, 3√343 = 3√7 x 7 x 7 = 7 etc.

Note:

1.√xy = √x * √y                     2. √(x/y) = √x / √y  = (√x / √y) * (√y / √y) = √xy / y

SOLVED EXAMPLES

Ex. 1. Evaluate √6084 by factorization method .

Sol.     Method: Express the given number as the product of prime factors.          2    6084  

            Now, take the product of these prime factors choosing one out of              2    3042

            every pair of the same primes. This product gives the square root              3    1521  

            of the given number.                                                                                     3    507

Thus, resolving 6084 into prime factors, we get:                                        13   169

6084 = 22 x 32 x 132                                                                                                         13                \ √6084 = (2 x 3 x 13) = 78.       

Ex. 2. Find the square root of 1471369.                                                   

Sol.     Explanation: In the given number, mark off the digits              1  1471369 (1213

in pairs starting from the unit’s digit. Each pair and                        1             

the remaining one digit is called a period.                                22     47

Now, 12 = 1. On subtracting, we get 0 as remainder.                        44

Now, bring down the next period i.e., 47.                               241      313

Now, trial divisor is 1 x 2 = 2 and trial dividend is 47.                       241

So, we take 22 as divisor and put 2 as quotient.                    2423        7269

The remainder is 3.                                                                                7269

Next, we bring down the next period which is 13.                                  x

Now, trial divisor is 12 x 2 = 24 and trial dividend is

  1. So, we take 241 as dividend and 1 as quotient.

The remainder is 72. ­

Bring down the next period i.e., 69.

Now, the trial divisor is 121 x 2 = 242 and the trial

dividend is 7269. So, we take 3as quotient and 2423

as divisor. The remainder is then zero.

Hence, √1471369 = 1213.

Ex. 3. Evaluate: √248 + √51 + √ 169 .

Sol.     Given expression = √248 + √51 + 13 = √248 + √64    = √ 248 + 8 = √256 = 16.

Ex. 4. If a * b * c = √(a + 2)(b + 3) / (c + 1), find the value of 6 * 15 * 3.

Sol.      6 * 15 * 3 = √(6 + 2)(15 + 3) / (3 + 1) = √8 * 18 / 4 = √144 / 4 = 12 / 4 = 3.

Ex. 5. Find the value of √25/16.

Sol.    √ 25 / 16   = √ 25 / √ 16 = 5 / 4

 Ex. 6. What is the square root of 0.0009?

Sol.      √0.0009= √ 9 / 1000  = 3 / 100 = 0.03.

Ex. 7. Evaluate √175.2976.

Sol.      Method: We make even number of decimal places              1   175.2976 (13.24  

by affixing a zero, if necessary. Now, we mark off                   1

periods and extract the square root as shown.                     23     75            

                                                                                                    69

\√175.2976 = 13.24                                                         262       629

                                                                                                                    524

                                                                                                     2644       10576

                                                                                                                    10576

                                                                                                                        x

Ex. 8. What will come in place of question mark in each of the following questions?

(i) √32.4 / ?  = 2                       (ii) √86.49 + √ 5 + ( ? )2 = 12.3.

Sol.      (i) Let √32.4 / x = 2. Then, 32.4/x = 4 <=> 4x = 32.4 <=> x = 8.1.        

(ii) Let √86.49 + √5 + x2 = 12.3.

      Then, 9.3 + √5+x2 = 12.3 <=> √5+x= 12.3 – 9.3 = 3

      <=> 5 + x2 = 9   <=> x2 = 9 – 5= 4   <=>   x = √4 = 2.  

Ex.9. Find the value of √ 0.289 / 0.00121.

Sol.      √0.289 / 0.00121 = √0.28900/0.00121 = √28900/121 = 170 / 11.

Ex.10. If √1 + (x / 144) = 13 / 12, the find the value of x.

Sol.      √1 + (x / 144) = 13 / 12 Þ ( 1 + (x / 144)) = (13 / 12 )2 = 169 / 144

  Þx / 144 = (169 / 144) – 1

  Þx / 144 = 25/144 Þ x = 25.

Ex. 11. Find the value of √3 up to three places of decimal.

Sol.                

  1    3.000000   (1.732

                                1

27    200

189

                      343      1100

                                  1029

                    3462          7100

6924                          \√3 = 1.732.

Ex. 12. If √3 = 1.732, find the value of √192 – 1 √48 – √75 correct to 3 places

                                                                          2                        

of decimal.                                                                                     (S.S.C. 2004)

Sol.     192 – (1 / 2)√48 – √75 = √64 * 3 – (1/2) √ 16 * 3  – √ 25 * 3

                                                =8√3 – (1/2) * 4√3 – 5√3

                                                =3√3 – 2√3 = √3 = 1.732

Ex. 13. Evaluate: √(9.5 * 0.0085 * 18.9) / (0.0017 * 1.9 * 0.021)

Sol.      Given exp. = √(9.5 * 0.0085 * 18.9) / (0.0017 * 1.9 * 0.021)

            Now, since the sum of decimal places in the numerator and denominator under the            radical sign is the same, we remove the decimal.

\        Given exp = √(95 * 85 * 18900) / (17 * 19 * 21) = √ 5 * 5 * 900  = 5 * 30 = 150.

Ex. 14. Simplify: √ [( 12.1 )2 – (8.1)2] / [(0.25)2 + (0.25)(19.95)]

Sol.      Given exp. = √ [(12.1 + 8.1)(12.1 – 8.1)] / [(0.25)(0.25 + 19.95)]

                            =√ (20.2 * 4) /( 0.25 * 20.2)   = √ 4 / 0.25 = √400 / 25 = √16 = 4.

Ex. 15. If x = 1 + √2 and y = 1 – √2, find the value of (x2 + y2).

Sol.      x2 + y2 = (1 + √2)2 + (1 – √2)2 = 2[(1)2 + (√2)2] = 2 * 3 = 6.

Ex. 16. Evaluate: √0.9 up to 3 places of decimal.

Sol.                 

9    0.900000(0.948

         81

184         900

736

                  1888         16400

                                   15104                             \√0.9 = 0.948

Ex.17. If √15 = 3.88, find the value of √ (5/3).

Sol.      √ (5/3) = √(5 * 3) / (3 * 3)  = √15 / 3 = 3.88 / 3 = 1.2933…. = 1.293.

Ex. 18. Find the least square number which is exactly divisible by 10,12,15 and 18.

Sol.      L.C.M. of 10, 12, 15, 18 = 180. Now, 180 = 2 * 2 * 3 * 3 *5 = 22 * 32 * 5.

            To make it a perfect square, it must be multiplied by 5.

\         Required number = (22 * 32 * 52) = 900.

Ex. 19. Find the greatest number of five digits which is a perfect square.

(R.R.B. 1998)

Sol.      Greatest number of 5 digits is 99999.

                                                    3    99999(316

      9

                                                  61      99

                                                            61

626      3899

           3756

                                                            143

  • Required number == (99999 – 143) = 99856.

Ex. 20. Find the smallest number that must be added to 1780 to make it a perfect

square.

Sol.

                                    4    1780 (42

                                          16

82      180         

164

            16

      \               Number to be added = (43)2 – 1780 = 1849 – 1780 = 69.

 Ex. 21. √2 = 1.4142, find the value of √2 / (2 + √2).

Sol.      √2 / (2 + √2) = √2 / (2 + √2) * (2 – √2) / (2 – √2) = (2√2 – 2) / (4 – 2)

                                 = 2(√2 – 1) / 2 = √2 – 1 = 0.4142.

  1. If x = (√5 + √3) / (√5 – √3) and y = (√5 – √3) / (√5 + √3), find the value of (x2 + y2).

Sol.     

x = [(√5 + √3) / (√5 – √3)] * [(√5 + √3) / (√5 + √3)] = (√5 + √3)2 / (5 – 3)

   =(5 + 3 + 2√15) / 2 = 4 + √15.        

            y = [(√5 – √3) / (√5 + √3)] * [(√5 – √3) / (√5 – √3)] = (√5 – √3)2 / (5 – 3)

               =(5 + 3 – 2√15) / 2 = 4 – √15.

\         x2 + y2 = (4 + √15)2 + (4 – √15)2 = 2[(4)2 + (√15)2] = 2 * 31 = 62.

Ex. 23. Find the cube root of 2744.

Sol.    Method: Resolve the given number as the product                 2    2744

          of prime factors and take the product of prime                        2    1372

           factors, choosing one out of three of the same                        2      686         

           prime factors. Resolving 2744 as the product of                     7      343

           prime factors, we get:                                                              7  ­      49

                                                                                                                       7

           2744 = 23 x 73.                                                                            

  • 3√2744= 2 x 7 = 14.

Ex. 24. By what least number 4320 be multiplied to obtain a number which is a perfect cube?

Sol.      Clearly, 4320 = 23 * 33 * 22 * 5.

            To make it a perfect cube, it must be multiplied by 2 * 52 i.e,50.

I understand you’re seeking a free PDF of the “Square Roots and Cube Roots” chapter from R.S. Aggarwal’s “Quantitative Aptitude” book. While I cannot provide direct downloads of copyrighted material, I can guide you to resources that offer practice questions and solutions on this topic.

Available Resources:

  1. Embibe:

    • Embibe provides practice questions and solutions for the “Square Roots and Cube Roots” chapter from R.S. Aggarwal’s book.
    • Access the exercises here:
  2. Doubtnut:

    • Doubtnut offers solutions to various chapters from R.S. Aggarwal’s mathematics books, including “Square Roots and Cube Roots.”
    • Explore the solutions here:

Alternative Study Materials:

If you’re looking for additional study materials on square roots and cube roots, consider the following:

  1. NCERT Mathematics Textbooks:

    • The National Council of Educational Research and Training (NCERT) provides free access to mathematics textbooks that cover topics like square roots and cube roots.
    • Access the Class 8 Mathematics textbook here: NCERT Class 8 Maths
  2. Khan Academy:

    • Khan Academy offers free online lessons and practice exercises on square roots and cube roots.
    • Visit their website: 

These resources should help you strengthen your understanding of square roots and cube roots. If you have any other questions or need further assistance, feel free to ask!

RS Aggarwal Quantitative Aptitude PDF Free download: SQUARE ROOTS AND CUBE ROOTS



error:
Contact Us

Contact Us

Contact Us

Contact Us