

Qualitative Inorganic Analysis

JEE (Main) Exercises

Single Correct Answer Type

- An aqueous solution of gas (X) turns red litmus blue; then gas will be:
 - (a) SO₂
- (b) SO₃
- (c) NH₃
- (d) None of these
- To aqueous solution of X on adding CuSO₄ a brown precipitate is obtained which turns white on adding of excess of Na2S2O3 solution; on addition of Ag+ ion solution, a yellow curdy precipitate is obtained which is insoluble in NH₄OH; then X will be:
 - (a) $Cu_2l_2 + l_3^{\circ}$
- (b) Cul₂
- (c) Cu₂I₂
- (d) KI
- A imparts green color to the flame. Its solution does not give a precipitate on passing H2S. When it is heated with solid K2Cr2O7 and conc. H2SO4, reddish brown gas is evolved. The gas when passed in an aqueous solution of NaOH turns it yellow. Find out A:
 - (a) HgCl₂
- (b) BaCl₂
- (c) Both (a) and (b)
- (d) None of these
- Which of the following anions will give same color of gas?
 - (a) NO_{2}^{-} , NO_{3}^{-} , I^{Θ}
- (b) NO₂, NO₃, CH₃COO
- (c) NO₂, Br[⊕] I[⊕]
- (d) NO₂, NO₃, Br^G
- Which of the following anion exist in equilibrium condition with other anion depending upon the pH of the solution?

- (a) CrO₄²
- (c) CO₃

No color Brown color to the solution

Find out (A):

- (a) I^{Θ} , Br^{Θ}
- (b) Br, NO
- (c) $C_1O_4^{2-}$, NO_3^{-}
- (d) NO₃, NO₂
- Select the correct statement:
 - (a) Cation and anion are also called acidic or basic radicals, respectively
 - (b) Classification of anion is systematic as that of cation
 - (c) All the anions are deducted by soda extract solution without any exception
 - (d) None of these
- Which of the following anions are identified by dil. H2SO4?
 - (i) CO_3^{2-} (ii) SO_3^{2-} (iii) $S_2O_3^{2-}$
- (iv) NO3

C both have

same color.)

- (v) I^{Θ} (vi) $C_2O_4^{2-}$
- (a) CO_3^{2-} , SO_3^{2-} , NO_3^- , $S_2O_3^{2-}$
- (b) SO_3^{2-} , $S_2O_3^{2-}$, I^{\oplus} , NO_3^{-}
- (c) CO_3^{2-} , SO_3^{2-} , $S_2O_3^{2-}$
- (d) CO_3^{2-} , SO_3^{2-} , NO_3^{-} , $C_2O_4^{2-}$

- Which of the following pair of anions will give same gas on treatment with acid?
 - (a) CO_3^{2-} , HCO_3^{-}
- (b) SO_3^{2-} , $S_2O_3^{2-}$
- (c) NO₂, NO₃
- (d) All are having same gas
- 10. When a mixture (A) of unknown gases is passed into the dichromate solution, then orange color turns to green; when the solution is boiled and gas passed into lime water, then lime water turns milky. Find out (A).
 - (a) CO₂, Cl₂
- (b) H₂S, CO₂
- (c) Both (a) and (b)
- (d) None of these
- $\xrightarrow{\Delta} B_{(s)} + C_{(g)}$ 11. (Used as a flux in metallurgy)

 $D \xrightarrow{C_{(g)}} Milky solution$

Find out (A).

- (a) Ca(HCO₃)₂
- (b) CaCO₃
- (c) Both (a) and (b)
- (d) Na₂CO₃
- 12. Which of the following metal will give redox reaction with steam water only?
 - (a) Zn
- (b) Mg
- (c) Fe
- (d) Ag
- 13. Which of the following acid is non-oxidizing acid?
 - (a) Conc. H2SO4
- (b) Conc. H₃PO₄
- (c) Conc. HNO3
- (d) None of these
- 14. When Ag reacts with conc. HCl, then products will be:
 - (a) AgCl, Cl₂
- (b) AgCl, H₂
- (c) AgCl, H2, Cl2
- (d) None of these
- 15. Which of the following metal will form NH4NO3 with dil. HNO3 (20%)?
 - (a) Zn
- (b) Sn
- (c) Ag
- (d) None of these
- Cold excess of White ppt. Mixture

Boil White ppt. Filtrate ppt. Find out A:

- (a) CO_3^- , HSO_3^-
- (b) CO₃²⁻, HCO₃⁻
- (c) SO_3^{2-} , HSO_3^{-}
- (d) SO_3^{2-} , CO_3^{2-}
- $A \xrightarrow{\text{Boil}} B$ (White ppt.) 17.

$$C \xrightarrow{\text{Boil}} D \text{ (Black ppt.)}$$
(White ppt.)

A and C both have sulphur containing anion; then identify A and C:

- (a) CaSO₃, CaS₂O₃
- (b) PbSO₃, PbS₂O₃
- (c) BaSO₃, BaS₂O₃
- (d) PbSO₃, BaS₂O₃
- 18. White ppt. of silver gives brown ppt. on boiling, but when it is heated (> 300°C), then a metallic black ppt. is obtained. Identify the compound of silver having white ppt:
 - (a) Ag₂SO₃
- (b) Ag₂S₂O₃
- (c) Ag₂CO₃.
- (d) AgCl
- 19. Which of the following complex of silver is not allowed on stand?
 - (a) [Ag(NH₃)₄][⊕]
- (b) [Ag(CN)₂]⁹
- (c) [Ag(NH₁)₂]⁺
- (d) Ag₂S₂O₃
- 20. When HgCl₂ reacts with CO₃²⁻ anion, then:
 - (a) Reddish brown precipitate of HgCO3.2HgO is formed
 - (b) Brownish red precipitate of HgCO3'3HgO is
 - (c) Reddish brown precipitate of HgCO3.3HgO is formed
 - (d) Blue ppt. of Hg₄O₄CO₃ is formed

21.

Find out A, B, C, and D.

- (a) Na₂CO₃, NaHCO₃, CO₂, H₂O
- (b) NaHCO3, Na2O, CO2, H2O
- (c) NaHCO3, Na2CO3, CO2, H2O
- (d) KHCO3, K2CO3, CO2, H2O
- Cold excess of White ppt. __filtered - 22. Mixture BaCl, of two anions boil White ppt.

Find out (A).

- (a) SO_3^{2-} , HSO_3^{-} (b) CO_3^{2-} , SO_3^{2-}
- (c) SO₃², HCO₃⁹
- (d) None of these
- 23. A salt is made of bivalent ions X and Y, each of which is capable of decolorizing acidified KMnO₄ solution. The salt is likely to be:
 - (a) Stannic chloride
- (b) Ferric sulphate
- (c) Ferrous sulphate
- (d) Ferrous oxalate

24.	. Which of the following salt will evolve sulphur dioxide			
	gas along with formation of yellowish turbidity when treated with dilute H ₂ SO ₄ ?			
	(a) Sodium sulphide	(b) Sodium sulphite		
12	(c) Sodium thiosulphate	(d) Sodium sulphate		
25.	A colorless salt gives w	hite precipitate with CaCl ₂		
	solution. The salt also d	ecolorizes acidified MnO ₄		
	with effervescence. On reaction with conc. H ₂ SO ₄ , the salt gives a colorless gaseous mixture containing:			
	(a) CO, CO ₂	(b) CO ₂ , SO ₂		
	(c) CO ₂ , H ₂ S	(d) None of these		
26.	Aqueous solution of a sal	$t + MgSO_4$ solution \longrightarrow no		
	ppt. in cold Heating	White ppt. appears		
	The salt contains the acid	dic radical:		
	(a) CO_3^{2-}	(b) HCO ₃		
	(c) SO ₃ ² -	(d) $C_2O_4^{2-}$		
27.	27. Which of the following compound is formed when			
		aqueous solution of sodium		
	chromate?			
	(a) Cr(OH) ₃ is precipitated			
	(b) Yellow solution of Cr ₂ (CO ₃) ₂ is formed			
	(c) Orange solution of N	(c) Orange solution of Na ₂ Cr ₂ O ₇ is formed		
	(d) No reaction			
28.	Which of the following ion gives a suffocating gas when treated with dilute HCl?			
	(a) Carbonate	(b) Sulphite		
	(c) Sulphate	(d) Borate		
29.	The acidic solution of a	salt produces blue color with		
	KI starch solution. The			
	(a) Sulphite	(b) Bromide		
	(c) Nitrite	(d) Chloride		
30.	Sulphite on treatment with dil. H ₂ SO ₄ liberates a gas			
	which:			
	(a) Turns lead acetate paper black			
	(b) Burns with blue flame			
	(c) Smells like vinegar			
	(d) Turns acidified K ₂ Cr ₂ O ₇ paper green			
31.	Violet vapors are given out when is treated with conc. H ₂ SO ₄ .			
	(a) Bromide	(b) Iodide		
i	(c) Chloride	(d) Nitrate		
32		hen sodium sulphide is added		
	to andium nitronniccide	10"		

(b) Yellow

(d) Black

(a) Purple

(c) Red

	Cűalji	ative Loorganic Analysis 4.3			
33.	Which of the followith dil HCl?	wing compound does not gives ppt.			
	(a) AgNO ₃	(b) Pb(NO ₃) ₂			
	(c) $Hg_2(NO_3)_2$	(d) $Cu(NO_3)_2$			
34		y addition of dil. H ₂ SO ₄ to a mixture			
54.	which turns lead acetate paper black. It is:				
	(a) SO ₂	(b) CO ₂			
	(c) H ₂ S	(d) NO ₂			
35,		ubbed with organic acid smells like			
	(a) Sulphite	(b) Nitrate			
	(c) Nitrite	(d) Acetate			
26	Soda extract is pr				
30,		nd mixture and then extracting with			
	water	in matter and their extraoting with			
		aHCO ₃ and mixture in dil. HCl			
		O ₃ and mixture, in dil. HCl			
		O ₃ and mixture, in distilled water			
37	Appropriate the second of the	alides, the soda extract is acidified			
57.	with:	-1-0			
	(a) Conc. H ₂ SO ₄	(b) Dil. HNO ₃			
	(c) Dil. HCl	(d) Any of the three			
38.	When an aqueou	is solution of gas (X) is added to brown precipitate is obtained which			
		INO_3 ; gas (X) will give white fumes			
de	(a) SO ₂	(b) Cl ₂			
0.	(c) CO ₂	(d) NH ₃			
30	42 5 5	first heated with dilute H2SO4 and			
071	trated H ₂ SO ₄ . No action is observed				
	in either case. Th				
	(a) Sulphide	' (b) Sulphite			
	(c) Sulphate	(d) Thiosulphate			
40.	A precipitate of o	alcium oxalate will not dissolve in:			
	(a) Acetic acid	(b) HCl			
	(c) HNO ₃	(d) Aqua-regia			
41.	The brown ring	test is performed for the qualitative			
	detection of:				
	(a) Bromides	(b) Iodides			
	(c) Nitrates	(d) Phosphates			
42.	Which compound	d does not dissolve in hot dil. HNO3			
	(a) HgS	(b) PbS			
	(c) CuS	(d) CdS			
43.	Which one is not	the interfering radical?			

(b) BO₃³⁻
(d) SO₄²⁻

(a) PO₄³⁻

(c) F.

Inorganic Chemistry

44. In the test for iodine, I₂ is treated with sodium thiosulphate (Na₂S₂O₃);

 $Na_2S_2O_3 + I_2 \longrightarrow NaI + \dots$

- (a) $Na_2S_4O_6$
- (b) Na₂SO₄
- (c) Na₂S
- (d) Na₃ISO₄
- 45. Which of the following sulphides is yellow in color?
 - (a) CuS
- (b) CdS
- (c) ZnS
- (d) CoS
- 46. Brown ring in the test of NO₃ is formed due to the formation of:
 - (a) FeSO₄·NO
- (b) [Fe(SO₄)₂·HO]·H₂O
- (c) Fe₂(SO₄)₃·NO
- (d) None of these
- 47. The brown ring test for nitrates depends on:
 - (a) The reduction of nitrate to nitric oxide
 - (b) Oxidation of nitric oxide to nitrogen dioxide
 - (c) Reduction of ferrous sulphate to iron
 - (d) Oxidizing action of sulphuric acid
- 48. A sodium salt of unknown anion when treated with MgCl₂ gives white precipitate only on boiling. The anion is:
 - (a) SO₄²⁻
- (b) HCO₃
- (c) CO_3^{2-}
- (d) NO₃
- 49. In the brown ring test, the brown color of the ring is due to:
 - (a) A mixture to NO and NO2
 - (b) Nitrosoferrous sulphate
 - (c) Ferrous nitrate
- (d) Ferric nitrate
- 50. S²⁻ and SO₃²⁻ can be distinguished by using:
 - (a) (CH₃COO)₂Pb
- (b) Na₂[Fe(CN)₅NO]
- (c) Both (a) and (b)
- (d) None of these
- 51. An aqueous solution containing Hg²⁺, Hg²⁺, Pb²⁺, and Cd²⁺ ions will give precipitates of with HCl.
 - (a) Hg₂Cl₂ only
- (b) PbCl₂ only
- (c) Hg₂Cl₂ and PbCl₂
- (d) HgCl2 and PbCl2
- 52. Which one of the following pairs of ions cannot be separated by H₂S in dilute HCl?
 - (a) Bi³⁺, Sn⁴⁺
- (b) Al3+, Hg2+
- (c) Cu²⁺, Zn²⁺
- (d) Ni²⁺, Cu²⁺
- 53. In qualitative analysis, Cd is under:
 - (a) I group
- (b) II group
- (c) III group
- (d) IV group
- 54. Which compound does not dissolve in hot dil. HNO₃?
 - (a) HgS
- (b) PbS
- (c) CuS
- (d) CdS

- 55. Which of the following metal sulphides has maximum solubility in water?
 - (a) HgS, $K_{sp} = 10^{-54}$
- (b) CdS, $K_{\rm sp} = 10^{-30}$
- (c) FeS, $K_{\rm sp} = 10^{-20}$
- (d) ZnS, $K_{sp} = 10^{-22}$
- 56. The compound formed in the borax-bead test of Cu²⁺ ion in oxidizing flame is:
 - (a) Cu
- (b) CuBO₂
- (c) Cu(BO₂)₂
- (d) None of these
- Identify the correct order of solubility of Na₂S, CuS, and ZnS in aqueous medium;
 - (a) CuS > ZnS > Na₂S
- (b) $ZnS > Na_2S > CuS$
- (c) $Na_2S > CuS > ZnS$
- (d) Na₂S > ZnS > CuS
- 58. Potassium chromate solution is added to an aqueous solution of a metal chloride. The precipitates thus obtained are insoluble in acetic acid. These are subjected to flame test; the color of the flame is:
 - (a) Lilac
- (b) Apple green
- (c) Crimson red
- (d) Golden yellow
- 59. Consider the following observation:

 M^{n+} + HCl \longrightarrow White precipitate $\stackrel{\triangle}{\longrightarrow}$ Water soluble

The metal ion M^{n+} will be:

- (a) Hg2+
- (b) Ag⁺
- (c) Pb2+
- (d) Sn2+
- 60. When H₂S is passed through Hg₂²⁺, we get:
 - (a) HgS
- (b) $HgS + Hg_2S$
- (c) HgS + Hg
- (d) Hg₂S
- 61. In Nessler's reagent for detection of ammonia, the active species is:
 - (a) Hg₂Cl₂
- (b) Hg²⁺
- (c) Hg₂I₂
- (d) HgI_4^{2-}
- 62. Precipitation of IV group cations takes place when H₂S passed is:
 - (a) Less ionized
- (b) Highly jonized
- (c) Not ionized
- (d) None of these
- 63. Nessler's reagent is:
 - (a) NaHgCl₄
- (b) K₂HgI₄/OH
- (c) $Hg(NH_3)_2CI$
- (d) K₂Hgl₄
- 64. To a metal nitrate, when KI solution is added, a black precipitate is produced at first; on adding excess of KI, orange solution is produced. Identify the metal ion:
 - (a) Hg²⁺
- (b) Bi3+
- (c) Cu²⁺
- (d) Pb^{2+}
- 65. The formula of the compound which gives violet color in Lassaigne's test for sulphur with sodium nitroprusside is:

- (a) Na₄[Fe(CN)₆S]
- (b) Na₄[Fe(CN)₅NCS]
- (c) Na₄[Fe(CN)₅NOS]
- (d) Na₂[Fe(CN)₅NOS]
- 66. When H2S gas is passed through HCI containing aqueous solution of CuCl2, HgCl2, BiCl3, and CoCl2, it does not precipitate out:
 - (a) CuS
- (b) HgS
- (c) Bi₂S₃
- (d) CoS
- 67. Yellow color solution of FeCl3 changes to light green
 - (a) SnCl₂ is added
- (b) Zn is added
- (c) H₂S gas is passed
- (d) All are true
- 68. Fe(OH)3 and Cr(OH)3 ppt. are separated by:
 - (a) aq. NH₃
- (b) HCl
- (c) NaOH / H₂O₂
- (d) H₂SO₄
- 69. Turnbull's blue and Prussian's blue, respectively, are:

 $Fe^{II} [Fe^{II} (CN)_6]^{2-}$

Fell [Fell (CN)6]

Fe^{II} [Fe^{III} (CN)₆]3-

Fe^{III} [Fe^{II} (CN)₆]⁴

IV

- (a) I, II
- (b) I, III
- (c) III, IV
- (d) IV, III
- 70. Ferric alum gives red color with NH4SCN due to formation of:
 - (a) AI(SCN)₃
- (b) FeSO₄
- (c) Fe(SCN)₃
- (d) Fe(SCN)₂
- 71. H₂S would separate the following at pH < 7:
 - (a) Zn2+, Co2+
- (b) Cu2+, Cd2+
- (c) Cu2+, Cr3+
- (d) Cu2+, As3+
- 72. Solution of (X) in dil. $HCl + H_2O \longrightarrow White turbidity$
 - $(X) \xrightarrow{H_2S/HCI} Brown ppt. (Y)$

X is:

- (a) Bi3+
- (b) Pb2+
- (c) Cd2+
- (d) Cu2+
- 73. AgNO3 gives white ppt. with hypo changing to black after some-time. Black ppt. is of:
 - (a) Ag₂S₂O₃
- (b) Ag₂SO₄
- (c) Ag₂S₄O₆
- (d) Ag₂S
- 74. Ag₂S is soluble in NaCN due to formation of:
 - (a) Na[Ag(CN)₂]
- (b) Ag(CN)₂
- (c) $Na_2[Ag(CN)_3]$
- (d) Na₂[Ag(CN)₂]
- 75. Cu²⁺ and Ag⁺ are both present in the same solution. To precipitate one of the ions and leave the other in solution, add:
 - (a) $H_2S_{(aq)}$
- (b) HCl_(aq)
- (c) HNO_{3(aq)}
- (d) NH₄NO_{3(aq)}

- 76. Of the following solutions, the one that is acidic is:
 - (a) ZnSO_{4(aq)}
- (b) NaAl(OH)4(aq)
- (c) NaHCO_{3(aq)}
- (d) KNO_{3(aq)}
- 77. With MnO, color of the bead in sodium carbonate-bead test is:
 - (a) Pink
- (b) Black
- (c) Yellow
- (d) Green
- 78. With Cr₂O₃, color of the bead in sodium carbonate-bead test is:
 - (a) Red
- (b) Blue
- (c) Yellow
- (d) Green
- 79. KI gives precipitate with all the cations given:
 - (a) Ag⁺, Hg₂²⁺, Pb²⁺
 - (b) Cu²⁺, Zn²⁺, Ni²⁺
 - (c) Na+, Ca2+, Mg2+
- (d) Ag⁺, Ca²⁺, Sr²⁺
- 80. Aq. $(A) + K_2CrO_4 \longrightarrow (B)$ aq. NH_3 (Red ppt.)
 - A is:
 - (a) AgNO₃
- (b) Pb(NO₃)₂
- (c) Hg₂(NO₃)₂
- (d) Ca(NO₃)₂
- 81. The ion most difficult to remove as a precipitate is:
 - (a) Ag+
- (b) NH₄
- (c) Fe3+
- (d) Cu2+
- 82. A colorless gas is dissolved in water and the resulting solution turns red litmus blue; the gas may have been which one of the following?
 - (a) HCl
- (b) H₂S
- (c) SO₂
- (d) NH₁
- 83. What would you observe if you add with shaking, excess dil. NaOH solution to ZnCl2 solution?
 - (a) A white ppt.
 - (b) A white ppt. which later dissolves
 - (c) A green ppt.
 - (d) A green ppt, which later dissolves
- 84. A mixture is known to contain NO3 and NO2. Before performing ring test for NO3, the aqueous solution should be made free of NO2. This is done by heating aqueous extract with:
 - (a) Conc. HNO; (d) Zinc dust (c) Urea
- 85. A suspension containing insoluble substances HgS and FeS is treated with 2NHCl. On filtering, the filtrate contained appreciable amounts of which one of the following?
 - (a) Mercury, iron
- (b) Only iron

(b) Dil. HNO3

- (c) Only mercury
- (d) None of these

Inorganic Chemistry, * 18.8

- 86. In the separation of Cu²⁺ and Cd²⁺ in 2nd group of qualitative analysis of cations, tetrammine copper(II) sulphate and tetraammine cadmium(II) sulphate react with KCN to form the corresponding cyanide complexes; which one of the following pairs of the complexes and their relative stabilities enables the separation of Cu²⁺ and Cd²⁺?
 - (a) K₃ [Cu(CN)₄]: less stable and K₂ [Cd(CN)₄]: more stable
 - (b) K_3 [Cu(CN)₄]: more stable and K_2 [Cd(CN)₄]: less stable
 - (c) $K_2[Cu(CN)_4]$: less stable and $K_2[Cd(CN)_4]$: more stable
 - (d) $K_2[Cu(CN)_4]$: more stable and $K_2[Cd(CN)_4]$: less stable
- 87. Which reagent is used to remove SO₄²⁻ or Cl⁻ from water?
 - (a) NaOH
- (b) Pb(NO₃)₂
- (c) BaSO₄
- (d) KOH
- 88. AgCl with NH3 forms a complex:
 - (a) Ag(NH₃)₂Cl
- (b) AgNO₃
- (c) AgNH₂Cl
- (d) Agmirror
- 89. Acidic solution of a salt produced deep blue color with starch and KI. The salt is:
 - (a) Chloride
- (b) Nitrite
- (c) Acetate
- (d) Bromide
- 90. CuSO₄ reacts with NH₄OH to give deep blue complex of:
 - (a) Copperammonium sulphate
 - (b) Copperammonium hydroxide
 - (c) Both (a) and (b)
 - (d) None of these
- 91. Prussian blue is formed when:
 - (a) Ferrous sulphate reacts with FeCla
 - (b) Ferric sulphate reacts with K₄[Fe(CN)₆]
 - (c) Ferrous ammonium sulphate reacts with FeCl3
 - (d) Ammonium sulphate reacts with FeCl₃
- 92. Which compound will not give positive chromyl chloride test?
 - (a) Copper chloride, CuCl₂
 - (b) Mercuric chloride, HgCl₂
 - (c) Zinc chloride, ZnCl2
 - (d) Anilinium chloride, C₆H₅NH₃*Cl⁻
- 93. A metal salt solution forms a yellow precipitate with potassium chromate in acetic acid, a white precipitate

with dil. sulphuric acid, but gives no precipitate with sodium chloride or iodide. The white precipitate obtained when sodium carbonate is added to the metal salt solution consists of:

- (a) Lead carbonate
- (b) Basic lead carbonate
- (c) Barium carbonate
- (d) Strontium carbonate
- 94. An inorganic salt solution gives a yellow precipitate with silver nitrate. The precipitate dissolves in dil. nitric acid as well as in ammonium hydroxide. The solution contains:
 - (a) Bromide
- (b) Iodide
- (c) Phosphate
- (d) Chromate
- 95. Which cation is detected by the flame test?
 - (a) NH₄⁺
- (b) K+
- (c) Mg^{2+}
- (d) $A1^{3+}$
- 96. Strongly acidified solution of barium nitrate gives a white precipitate with......which did not dissolve even after large addition of water:
 - (a) Sodium phosphate
- (b) Sodium carbonate
- (c) Sodium sulphate
- (d) Sodium chloride
- 97. A substance on treatment with dil. H₂SO₄ liberates a colorless gas which produces (i) turbidity with baryta water and (ii) turns acidified dichromate solution green. The reaction indicates the presence of:
 - (a) CO_2^{2-}
- (h) S2
- (c) SO_3^2
- (d) NO;
- 98. Ca, Ba, and Sr ions are precipitated in fifth group as their:
 - (a) Oxides
- (b) Sulphates
- (c) Carbonates
- (d) Sulphides
- Conc. H₂SO₄ on addition to dry KNO₃ gives brown fumes of:
 - (a) SO₂
- (b) SO₃
- (c) NO
- (d) NO_2
- 100. Ferric ion forms a prussian blue colored ppt. due to the formation of:
 - (a) K₄[Fe(CN)₆]
- (b) Fe4[Fe(CN)6]3
- (c) KMnO₄
- (d) Fe(OH)3
- 101. In the precipitation of the iron group in qualitative anlaysis, ammonium chloride is added before adding ammonium hydroxide to:
 - (a) Decrease concentration of OH- ions
 - (b) Prevent interference by phosphate ions
 - (c) Increase concentration of CI ions
 - (d) Increase concentration of NH₄ ions

Qualitative Unorganic Analysis

			Approximation of Approximation (Approximation)	
102. H ₂ S gas, on passing thro	ugh an alkaline solution, forms	113. As ₂ S ₃ is:		
a white precipitate. The	solution contains ions of:	(a) Black	(b) Yellow	
(a) Pb	(b) Zn	(c) Orange	(d) White	
(c) Cu	(d) Ni	114. A black sulphide is	s formed by the action of H ₂ S on:	
103. Which gives violet cold	or with borax?	(a) CuCl ₂	(b) CdCl ₂	
(a) Fe	(b) Pb	(c) ZnCl ₂	(d) NaCl	
(c) Co	. (d) Mn	115, Pb(CH ₃ COO) ₂ giv	escolor with H ₂ S:	
104. Yellow ammonium su	lphide solution is a suitable	(a) Black	(b) White	
reagent used for the ser	paration of:	(c) Red	(d) Orange	
(a) HgS and PbS	(b) PbS and Bi ₂ S ₃	116. Acidified K2Cr2O	turns green by:	
(c) Bi ₂ S ₃ and CuS	(d) CdS and As ₂ S ₃	(a) CO ₂	(b) SO ₃	
105. An orange red precipit	tate obtained by passing H ₂ S	(c) SO ₂	(d) HNO ₃	
through an acidified so	lution of an inorganic salt in-	117. Chemical volcano is produced on heating:		
dicates the presence of		(a) K ₂ Cr ₂ O ₇	(b) (NH ₄) ₂ Cr ₂ O ₇	
(a) Cadmium	(b) Tin	(c) ZnCr ₂ O ₇	(d) K ₂ CrO ₄	
(c) Antimony	(d) Bismuth	118. Which gives blood	I red color with ammonium thiocy-	
106. The presence of NH ₄ ⁺	radical in solution can be de-	anate?	-171	
tected by:		(a) Fe ³⁺	(b) Fe ²⁺	
(a) Fehling's solution	(b) Benedict's solution	(c) Cu ²⁺	(d) Cd ²⁺	
(c) Schiff's reagent	(d) Nessler's reagent	119. A salt having BO	0_3^{3-} on burning with alcohol and	
107. Excess of concentrated	sodium hydroxide can separate	conc. H ₂ SO ₄ gives	s , edge flame:	
a mixture of:	Company and the company of the state of the	(a) Green	(b) Yellow	
(a) Al3+ and Cr3+	(b) Cr3+ and Fe3+	(c) Red	(d) White	
(c) Al3+ and Zn3+	(d) Zn ²⁺ and Pb ²⁺	120. Carbonates of Ba,	Sr, and Ca are:	
108. Potassium thiocyanat	e solution reacts with ferric	(a) White	(b) Blue	
chloride to give:		(c) Green	(d) Yellow	
(a) Pink color	(b) Deep blue color	121. The II group precip	pitates soluble in yellow ammonium	
(c) Green color	(d) Blood-red color	sulphide may be:		
109. A green mass is form	ed in the charcoal cavity test	(a) As, Sb, Sn	(b) Cu, Hg, Bi, Cd	
when a colorless salt (.	X) is fused with cobalt nitrate.	(c) Both (a) and (b	(d) None of these	
(X) may contain:		122. CaC ₂ O ₄ isin v	vater:	
(a) Aluminium	(b) Copper	(a) Insoluble	(b) Soluble	
(c) Barium	(d) Zinc	(c) Complex	(d) None of these	
	g sulphides has the maximum		erally not used for preparation of	
solubility product?		2200000 00 0000	n analysis of basic radicals, because	
(a) HgS	(b) PbS	it:		
(c) CuS	(d) MnS	(a) Is oxidizing ag		
111. A white metal sulphide	e soluble in water is:	(c) Forms insolub		
(a) CuS	(b) Na ₂ S	(d) Forms soluble		
(c) PbS	(d) ZnS		glyoxime solution is added to ar	
112. Lead has been placed in and 2nd because:	n qualitative group analysis 1st	 aqueous solution of nickel chloride in presence of ammonium hydroxide: (a) A black ppt. is formed 		
(a) It shows the valence	ov one and two			

(b) It forms insoluble PbCl₂

(d) PbCl2 is partially soluble in water

(c) It forms lead sulphide

(b) A blue ppt. is formed

(d) No ppt. is formed

(c) A rose red ppt. is formed

Inorganic Chemistry: -

- 125. A white salt soluble in NH₄OH but insoluble in water is:
 - (a) BaSO₄
- (b) CuSO₄
- (c) PbSO₄
- (d) AgCl
- 126. The sulphide not soluble in hot dilute nitric acid is:
 - (a) CuS
- (b) ZnS
- (c) CdS
- (d) HgS
- 127. KBr, on reaction with conc. H2SO4, gives reddish-brown gas:
 - (a) Bromine
 - (b) Mixture of bromine and HBr
 - (c) HBr
- (d) NO2
- 128. Formation of a green-edged flame on igniting the vapors evolved by heating a given inorganic salt with a few mL of ethyl alcohol and conc. H2SO4 indicates the presence of a:
 - (a) Tartrate
- (b) Oxalate
- (c) Acetate
- (d) Borate
- 129. The compound which turns black with NH4OH is:
 - (a) Lead chloride
- (b) Mercurous chloride
- (c) Mercuric chloride
 - (d) Silver chloride
- 130. Formation of a rosy-red precipitate when a slightly alkaline solution of an inorganic salt is treated with dimethyl glyoxime confirms the presence of:
 - (a) Cobalt
- (b) Zinc
- (c) Iron
- (d) Nickel
- 131. The metal that does not give the borax bead test is:
 - (a) Cr
- (b) Ni
- (c) Pb
- (d) Mn
- 132. H₂S will precipitate the sulphides of all the metals from the solution of chlorides of Cu, Zn, and Cd if:
 - (a) The solution is aqueous
 - (b) The solution is acidic
 - (c) The solution is dilute acidic
 - (d) Any of the above solutions is present
- 133. To a solution of a substance, gradual addition of ammonium hydroxide results in a black precipitate which does not dissolve in excess of NH4OH. However, when HCl is added to the original solution, a white precipitate is formed. The solution contained:
 - (a) Lead salt
- (b) Silver salt
- (c) Mercurous salt
- (d) Copper salt
- 134. A compound is soluble in water. If ammonia is added to aqueous solution of the compound, a brown precipitate

- appears which is soluble in dil. HCl. The compound has:
- (a) Aluminium
- (b) Zinc
- (c) Iron
- (d) Cadmium
- 135. A light green colored salt soluble in water gives black precipitate on passing H2S which dissolves readily in HCl. The metal ion present is:
 - (a) Co2+
- (b) Fe2+
- (c) Ni²⁺
- (d) Ag⁺
- 136. An inorganic salt when heated evolves colored gas which bleaches moist litmus paper. The evolved gas
 - (a) NO₂
- (b) SO2
- (c) N2O
- (d) I2
- 137. All ammonium salts liberate ammonia when:
 - (a) Heated with HCl
- (b) Heated with caustic soda
- (c) Heated with H₂SO₄ (d) Heated with NaNO₂
- 138. Silver, mercury, and lead are grouped together in a scheme of qualitative analysis because they form:
 - (a) Nitrates
 - (b) Carbonates which dissolve in dil. HNO3
 - (c) Insoluble chlorides (d) Colorless compounds
- 139. Manganese salt + PbO₂ + conc. HNO₃ ---- The solution has purple color.

The color is due to:

- (a) HMnO₄
- (b) A lead salt
- (c) Mn(NO₃)₂
- (d) H₂MnO₄
- 140. An orange precipitate of II group is dissolved in conc. HCl; the solution when treated with excess of water turns milky due to formation of:
 - (a) Sn(OH)Cl
- (b) Sb(OH)Cl₂
- (c) SbOCI
- (d) Sb(OH)2Cl

JEE (Advanced Exercise

Single Correct Answer Type

- Which of the following sulphide is not soluble in dil. HNO₃?
 - (a) PbS
- (b) HgS
- (c) ZnS
- (d) Bi₂S₃
- Which of the following solutions gives precipitate with Pb(NO₃)₂ but not with Ba(NO₃)₂?
 - (a) Sodium chloride
- (b) Sodium sulphate

TO THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN

- (c) Sodium nitrate
- (d) Sodium hydrogen phosphate

- 3. The color developed when sodium sulphide is added to sodium nitroprusside is:
 - (a) Violet
- (b) Yellow
- (c) Red
- (d) Black
- 4. A white powder when strongly heated gives off brown fumes. A solution of this powder gives a yellow precipitate with a solution of KI. When a solution of barium chloride is added to a solution of powder, a white precipitate results. This white powder may be:
 - (a) A soluble sulphate
- (b) KBr or NaBr
- (c) Ba(NO₃)₂
- (d) AgNO₃
- 5. In qualitative analysis, Cd2+ is under:
 - (a) I group
- (b) II group
- (c) III group
- (d) IV group
- 6. The ion that cannot be precipitated by both HCl and H₂S is:
 - (a) Pb^{2+}
- (b) Ba²⁺
- $(c) Ag^+$
- (d) Sn²⁺
- 7. Which sulphide is insoluble in dilute acids but soluble in alkalies:
 - (a) PbS
- (b) CdS
- (c) FeS
- (d) As₂S₃
- 8. An aqueous solution of a substance gives a white precipitate on treatment with dilute hydrochloric acid, which dissolves on heating. When hydrogen sulphide is passed through the hot acidic solution, a black precipitate is obtained. The substance is a/an:
 - (a) Hg₂²⁺ salt
- (b) Cu2+ salt
- (c) Ag+ salt
- (d) Pb2+ salt
- 9. When $S_2O_3^{2-}$ ion reacts with X cation, then first redox reaction takes place and after this ppt. reaction; then X may be:
 - (a) Cu2+
- (b) Fe3+
- (c) Hg2+
- (d) Bi3+
- 10. Which is soluble in water?
 - (a) AgF
- (b) AgCl
- (c) AgBr
- (d) AgI
- Using dil. HCl, which of the following radical cannot be confirmed:
 - (a) S^{2}
- (b) $S_2O_3^{2-}$
- (c) CO_3^{2-}
- (d) NO₂-
- When K₂Cr₂O₇ is heated with conc. H₂SO₄ and soluble chloride such as KCl:
 - (a) Red vapors of CrO2Cl2 are evolved
 - (b) Cl ion is oxidized to Cl2 gas

- (c) CrCl3 is formed
- (d) Cr₂O₇²⁻ ion is reduced to green Cr³⁺ ion
- 13. A salt on heating with dilute H₂SO₄ and subsequently treatment with a few drops of dilute K₂Cr₂O₇ turns into green solution. The salt may be a:
 - (a) Sulphate
- (b) Nitrate
- (c) Sulphide
- (d) Chromate
- 14. The reagents NH₄Cl and aqueous NH₃ will precipitate:
 - (a) Ca2+
- (b) $A1^{3+}$
- (c) Mg2+
- (d) Zn^{2+}
- 15. In a mixture of PbS, ZnS, and FeS₂, each component is separated from the other by using the reagents in which of the following sequence in froth floatation process?
 - (a) Potassium ethyl xanthate, KCN, NaOH, copper sulphate, acid
 - (b) KCN, CuSO₄, acid
 - (c) Potasssium ethyl xanthate, KCN
 - (d) None of these
- 16. A doctor by mistake administers a Ba(NO₃)₂ solution to a patient for radiography investigations. Which of the following should be given as the best to prevent the absorption of soluble barium?
 - (a) Na₂SO₄
- (b) NaCl
- (c) NH₄Cl
- (d) Na₂CO₃
- 17. Which of these is the correct group reagent for group cations?
 - (a) Mn²⁺ Co²⁺ Zn²⁺ Ni²⁺; dil. HCl
 - (b) $Mn^{2+} Co^{2+} Zn^{2+} Ni^{2+}$; $NH_4Cl + NH_4OH + H_2S$
 - (c) Mn²⁺ Co²⁺ Zn²⁺ Ni²⁺; NH₄Cl + NH₄OH
 - (d) Mn^{2+} Co^{2+} Zn^{2+} Ni^{2+} ; $HCl + H_2S$
- 18. A white solid imparts a violet color to a Bunsen flame. On being heated with concentrated H₂SO₄, the solid gives violet vapors that turn starch paper blue. The salt may be:
 - (a) KI
- (b) Nal
- (c) MgI₂
- (d) CaBr₂
- 19. Thenard blue is:
 - (a) Cu(NH₃)₄ SO₄
- (b) CoAl2O4
- (c) K_2 Fe[Fc(CN)₆]
- (d) $Fe_4[Fe(CN)_6]_3$
- 20. The chocolate colored precipitate is:
 - (a) $[Fe(H_2O)_5 (NO)] SO_4$ (b) $Fe_2[Fe(CN)_6]$
 - (c) $Cu_2[Fe(CN)_6]$
- (d) HgSO₄

Fromanic Chemistry

- 21. Among the species A (CrCl₂), B (CuS), C (AlCl₂), D (ZnCl₂), which will be soluble in excess of NaOH?
 - (a) A, C, and D
- (b) C and D only
- (c) B and C only
- (d) A and D only
- 22. $2Ag^+$ (excess) + $S_2O_3^{2-}$ $\longrightarrow Ag_2S_2O_3 \xrightarrow{H_2O} X +$
 - $2 \text{ NO}_2^- + 2\text{I}^- \xrightarrow{\text{acidic medium}} Y + \text{I}_2 + 2\text{H}_2\text{O}$ Suggest the formula of the products X and Y.
 - (a) $X = Ag_2O$, $Y = N_2$ (b) $X = Ag_2S$, $Y = N_2$
 - (c) $X = Ag_2O$, $Y = 2NO_2$ (d) $X = Ag_2S$, Y = 2NO

23.

$$A \text{ (Colorless salt)} \xrightarrow{\underline{A}} \underbrace{\underbrace{B+C+D}_{F}}^{E}$$

Gas (C) turns solution (E) milky. (B) burns with blue flame. (A) also decolorizes MnO₄-/H⁺.

Thus (A), (B), (C), (D), and (E) are:

- (a) $A = \text{CaC}_2\text{O}_4$, $B = \text{CO}_2$, C = CO, D = CaO, E = COCa(OH)₂
- (b) $A = \text{CaCO}_3$, B = CaO, C = CO, $D = \text{CO}_2$, $E = \text{CO}_2$ Ca(OH)2
- (c) $A = \text{CaCl}_2$, $B = \text{Cl}_2$, $C = \text{O}_2$, D = CaO, $E = \text{Ca}(\text{OH})_2$
- (d) $A = \text{CaC}_2\text{O}_4$, $B = \text{CO}_2$, $C = \text{CO}_2$, $D = \text{CaO}_3$, $E = \text{CO}_2$ Ca(OH)2
- 24. Which acid forms salts of any metal usually water soluble?
 - (a) HClO₄
- (b) CH₃COOH
- (c) HNO₃
- (d) H₂CO₃
- 25. During the presence of SO₃²⁻ and S²⁻ in a mixture, with addition of dil. H2SO4, one can notice:
 - (a) SO₂ and H₂S are not formed
 - (b) SO₂ and H₂S formed undergo a redox change forming colloidal sulphur and thus no smell
 - (c) A smell of rotten egg
 - (d) A smell of burning sulphur
- 26. Which of the following is not a protonic acid?
 - (a) PO(OH)3
- (b) B(OH)3
- (c) SO(OH)2
- (d) SO₂(OH)₂
- 27. Which of the following will be precipitates when H₂S gas is passed through their solutions at pH = 10.0?
 - (a) Na+
- (b) Ba2+
- (c) Zn2+
- (d) Ca2+

28.
$$A \xrightarrow{\Delta} B + C_{(g)} + D_{(g)}$$
(Solid) (Brown residue)

- (a) FeCla
- (b) $Fe_2(SO_4)_3$
- (c) FeSO₄

white ppt.

- (d) All are correct
- presence of HC
- aq.solution with K2 HgI4

(B)

(Light green) Brownppt. crystalline compound

Find out (A):

- (a) FeSO₄
- (b) (NH₄)₂ SO₄
- (c) FeSO₄(NH₄)₂SO₄·6H₂O
- (d) None of these
- 30. Fe + conc. HNO₃ $\longrightarrow X$

(> 80%)

Then X will be:

- (a) Fe_2O_3
- (b) FeO
- (c) Fe₃O₄
- (d) None of these
- 31. Select the incorrect statement:
 - (a) When SO_3^{2-} reacts with Pb(NO₃)₂, then a white
 - ppt. is formed; on boiling, the precipitate is oxidized by atmospheric oxygen and lead sulphate is
 - (b) White ppt. of PbSO₃ is soluble in dil. HNO₃, and excess of NaOH solution.
 - (c) When white ppt. of Ag₂SO₃ is boiled, then brown and metallic black ppt. is formed
 - (d) Ag₂SO₃ is insoluble in excess of Na₂SO₃ solution
- 32. When an aqueous solution of gas (X) is added in excess to a copper sulphate solution, a deep blue color is obtained; then gas is:
 - (a) CH₃COOH
- (b) NH₃
- (c) SO2
- (d) None of these
- 33. When a mixture containing phosphate is heated with conc. HNO3 and ammonium molybdate solution, a canary yellow precipitate is formed. The formula of the yellow precipitate is:
 - (a) (NH₄)₃PO₄
- (b) (NH₄)₃PO₄·12MoO₄
- (c) (NH₄)₃PO₄·12MoO₃
- (d) (NH₄)₃PO₄·(NH₄)₂·MoO₄
- 34. A solution of a metal ion when treated with KI gives a red precipitate which dissolves in excess of KI to give a colorless solution. Moreover, the solution of metal

ion on treatment with a solution of cobalt(II)thiocyanate gives rise to deep blue crystalline precipitate. The metal ion is:

- (a) Pb2+
- (b) Hg²⁺
- (c) Cu2+
- (d) Co2+
- 35. $[X] + \text{dil. } H_2SO_4 \longrightarrow [Y] \text{ colorless gas with suffocat-}$ ing smell
 - $[Y] + K_2Cr_2O_7 + H_2SO_4 \longrightarrow \text{green solution}$
 - [X] and [Y] are:
 - (a) SO_3^{2-} and SO_2
- (b) Cl- and HCl
- (c) S2- and H2S
- (d) CO₃²⁻ and CO₂
- $\xrightarrow{MnO_4^-/H^+}$ Decolorization of 36. A colorless salt A permanganate sol. occurs

Heat
$$X+Y+2$$
Gases

 $Z \xrightarrow{H_2O} B$

Gas $Y + B \longrightarrow \text{milkiness}$

Gas X burns with blue flame. Mark the correct choice.

X	Y	Z	В
CO	CO_2	CaO	Ca(OH) ₂
CO	CO ₂	CaO	Ca(OH) ₂
CO_2	CO	CaO	Ca(OH) ₂
	CO CO	CO CO ₂	CO CO ₂ CaO CO CO ₂ CaO

(d) CaOCl₂

37. Colorless salt A Conc. H2SO4 Brown fumes Blue solution + metal C

-White ppt. soluble in NH4OH

The salt A is:

- (a) Cu(NO₃)₂
- (b) Pb(NO3)2

CaO

Ca(OH)2

- (c) AgNO₃
- (d) Zn(NO₃)₂
- $NaCl + K_2Cr_2O_7 + conc. H_2SO_4 \xrightarrow{Heat} Red colored$ gas NaOH solution Yellow solution

The formula and color of X is:

- (a) CrO2Cl2, red
- (b) Cr₂(SO₄)₃, green
- (c) PbO, yellow
- (d) PbCrO₄, yellow

39.
$$[C] \leftarrow CaCl_2$$
 $[A] \xrightarrow{KOH} \xrightarrow{\Delta} [B]$

Colorless salt white fumes with HCl

William A. $[C]$ the alarmost mink colors of anidified

White ppt. [C] decolorizes pink color of acidified $KMnO_4$, then [A] is:

- (a) NH₄ClO₄
- (b) NH₄NO₂

(c) $(NH_4)_2C_2O_4$

- (d) (NH₄)₂SO₄
- A colorless salt A decolorizes the brown color of I₃. Solution of A on treatment with AgNO3 gives white precipitate. The compound A turns FeCl3 solution (yellow) to FeCl2 solution (green). Identify A:
 - (a) Na₂S
- (b) Na₂S₂O₃
- (c) Na₂CO₃
- (d) Na₂SO₄
- 41. A gas X is passed through water to form saturated solution. The aqueous solution on treatment with AgNO3 gives a white precipitate. The saturated aqueous solution also dissolves magnesium ribbon with evolution of a colorless gas Y. Identify X and Y:

 - (a) $X = CO_2$, $Y = Cl_2$ (b) $X = Cl_2$, $Y = CO_2$

 - (c) $X = Cl_2$, $Y = H_2$ (d) $X = H_2$, $Y = Cl_2$
- 42. MgSO₄ on reaction with NH₄OH and Na₂HPO₄ forms a white crystalline precipitate. What is its formula?
 - (a) Mg(NH₄)PO₄
- (b) $Mg_3(PO_4)_2$
- (c) MgCl₂·MgSO4
- (d) MgSO₄
- 43. KCl + conc. $H_2SO_4 + K_2Cr_2O_7 \xrightarrow{\Delta} (X) \xrightarrow{NaOH}$
 - (X) is reddish brown colored gas soluble in NaOH forming (Y). (X) and (Y) are:

 - (a) Cr₂OCl₂, Na₂CrO₃ (b) Cr₂O₂Cl₂, Na₂CrO₃

 - (c) CrO₂Cl, Na₂CrO₄ (d) CrO₂Cl₂, Na₂CrO₄
- 44. $K_2Cr_2O_7$ + conc. H_2SO_4 + H_2O_2 + ether \longrightarrow blue perchromic anhydride (in ethereal layer)

Blue color is due to:

- (a) CrO₃
- (b) H2CrO4
- (c) H₂Cr₂O₃
- (d) CrO₅
- **45.** $HgCl_2 + \text{excess of } KI \longrightarrow (A) \xrightarrow{NH_3/N_0OH} (B)$
 - (A) and (B), respectively, are:
 - (a) K₂HgI₄ (Nessler's reagent), Hg < (Brown ppt.)

(Iodide of Millon's base) (Y)

- (b) (Y), (X)
- (c) Both (X)
- (d) Both (Y)
- 46. To increase significantly the concentration of free Zn2+ ion in a solution of the complex ion [Zn(NH3)4]2+, $Zn^{2+}_{(aq)} + 4NH_3 \rightleftharpoons [Zn(NH_3)_4]^{2+}_{(aq)}$ add to the solution some:
 - (a) H_2O
- (b) HCl_(aq)

Inorganic Chemistry

- (c) NH_{3(aq)}
- (d) NH₄Cl_(aq).
- 47. Three test tubes A, B, C contain Pb2+, Hg2+, and Ag+ (but unknown). To each, aqueous solution NaOH is added in excess. Following changes occur.
 - A: Black ppt.
- B: Brown ppt
- C: White ppt. but dissolves in excess of NaOH
- A, B, and C contain, respectively:
- (a) Pb^{2+} , Hg_2^{2+} , Ag^+ (b) Hg_2^{2+} , Ag^+ , Pb^{2+}
- (c) Ag^+ , Pb^{2+} , Hg_2^{2+} (d) Ag^+ , Hg_2^{2+} , Pb^{2+}
- 48. Consider the following equilibrium:

$$AgCl \downarrow + 2NH_3 \longrightarrow [Ag(NH_3)_2]^+ + Cl^-$$
Soluble

White ppt. of AgCl appears on adding:

- (a) NH3
- (b) Aq. NaBr
- (c) Aq. HNO3
- (d) Aq. NH₄I
- 49. Borax on heating strongly above its melting point melts to a liquid, which then solidifies to a transparent mass commonly known as borax-bead. The transparent glassy mass consists of:
 - (a) Sodium pyroborate
 - (b) Boric anhydride
 - (c) Sodium meta-borate
 - (d) Boric anhydride and sodium metaborate
- 50. If CO₂ gas is passed into aq. Na₂CrO₄ yellow solution:
 - (a) Aq. Na₂Cr₂O₇ (orange) solution is formed
 - (b) Aq. Cr₂(CO₃)₂ is formed
 - (c) Cr(OH)3 is precipitated
 - (d) No action
- 51. Four test tubes contain dil. HCl, BaCl2, CdCl2, and KNO3 solution. Which of the following will identify BaCl₂?
 - (a) Dil. HCl
- (b) K2CrO4
- (c) NaF
- (d) AgNO₃
- 52. A yellow solid known to be a single compound is completely insoluble in hot water but dissolves in hot dilute HCl to give an orange solution. When this solution is cooled, a white crystalline ppt. is formed. This white ppt. redissolves on heating the solution. The compound is:
 - (a) Fe(OH)₃
- (b) PbCrO₄
- (c) K2CrO4
- (d) Co(OH),
- 53. A mixture upon adding conc. H₂SO₄ gives orange red fumes. It may contain the anion pair:
 - (a) $CrO_4^{2-} + Cl^{-}$
- (b) $Br^- + Cl^-$
- (c) $NO_3^- + CI^-$
- (d) $CrO_4^{2-} + NO_3^{-}$

- 54. AgNO_{3(aq.)} gives yellow ppt. with:
 - (a) KIO_{3(ac.)} .
- (b) KI_(aq.)
- (c) CHI₃
- (d) CH₂I₂
- 55. The solution of a chemical compound X reacts with AgNO₃ solution to form a white precipitate of Y which dissolves in NH₄OH to give a complex Z. When Z is treated with dil. HNO3, Y reappears. The chemical compound X can be:
 - (a) NaCl
- (b) CH₃Cl
- (c) NaBr
- (d) NaI
- 56. The presence of magnesium is confirmed in the qualitative analysis by the formation of a white crystalline precipitate of:
 - (a) Mg(HCO₃)₂
- (b) MgNH₄PO₄
- (c) MgNH₄(HCO₃)₃
- (d) MgCO₃
- 57. In qualitative inorganic analysis, phosphate, if present, is to be eliminated in the appropriate group in order to detect the radical:
 - (a) Pb2+
- (c) Ca2+
- (d) Cd2+
- 58. Al3+, Fe3+, and Cr3+, are grouped together for qualitative analysis because their:
 - (a) Carbonates are insoluble in NH3
 - (b) Hydroxides are insoluble in NH3
 - (c) Sulphides are soluble in acid
 - (d) None of these
- 59. SnS is:
 - (a) Black
- (b) Brown
- (c) Orange
- (d) Yellow
- 60. Na₂CO₃ cannot be used in place of (NH₄)₂CO₃ for the precipitation of V group because:
 - (a) Na+ interferes in the detection of V group
 - (b) Conc. of CO₃² is very low
 - (c) Na will react with acid radicals
 - (d) Mg will be precipitated
- 61. CoCl2 is:
 - (a) Pink
- (b) Black
- (c) Green
- (d) Colorless
- 62. Which on mixing gives deep brown color?
 - (a) $N_2O + O_2$
- (b) $NO + O_2$
- (c) $N_2O_3 + O_2$
- (d) None of these
- 63. NaCl, NaBr, NaI mixture on adding conc. H₂SO₄ gives gases, respectively:
 - (a) HCl, Br₂, I₂
- (b) HCl, HBr, HI
- (c) Cl2, Br2, I2
- (d) None of these