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Preface

U V hile the paper-setting pattern and assessment methodology have been revised many times over and newer criteria devised
to help develop more aspirant-friendly engineering entrance tests, the need to standardize the selection processes and their out-
comes at the national level has always been felt. A combined national-level engineering entrance examination has finally been
proposed by the Ministry of Human Resource Development, Government of India. The Joint Entrance Examination (JEE) to
India’s prestigious engineering institutions (ITTs, IIITs, NITs, ISM, IISERs, and other engineering colleges) aims to serve as
a common national-level engineering entrance test, thereby eliminating the need for aspiring engineers to sit through multiple
entrance tests.

‘While the methodology and scope of an engineering entrance test are prone to change, there are two basic objectives that
any test needs to serve:

1. The objective to test an aspirant’s caliber, aptitude, and attitude for the engineering field aﬂ&mp'feéﬁion.
2. The need to test an aspirant’s grasp and understanding of the concepts of the subjects of study and their applicability
at the grassroot level. A '

Students appearing for various engineering entrance examinations cannot bank solely @mconventional shortcut measures
to crack the entrance examination. Conventional techniques alone are not enough as.most of the questions asked in the ex-
amination are based on concepts rather than on just formulae. Hence, it is necessary. for students appearing for joint entrance
examination to not only gain a thorough knowledge and understanding of the coneepts'but also develop problem-solving skills
to be able to relate their understanding of the subject to real-life applications _b_a_sad on these concepts. .

This series of books is designed to help students to get an all-round grasp of the subject so as to be able to make its useful
application in all its contexts. It uses a right mix of fundamental principles and concepts, illustrations which highlight the ap-
plication of these concepts, and exercises for practice. The objective of each book in this series is to help students develop their
problem-solving skills/accuracy, the ability to reach the crux Qf-,ihe'-.m_aﬁq?;-_and the speed to get answers in limited time. These
books feature all types of problems asked in the examination—be it MCQs (one or more than one correct), assertion-reason
type. matching column type, comprehension type, or integer type questions. These problems have skillfully been set to help
students develop a sound problem-solving methodology. ¢

Not discounting the need for skilled andguided practice, the material in the books has been enriched with a number of
fully solved concept application exercises so that every step in learning is ensured for the understanding and application of the
subject. This whole series of books adopts-amulti-facetted approach to mastering concepts by including a variety of exercises
asked in the examination. A mix of ques‘t_iq,ps"hfglps stimulate and strengthen multi-dimensional problem-solving skills in an
aspirant.

It is imperative to note tlmtthls bnojc ‘would be as profound and useful as you want it to be. Therefore, in order to get maxi-
mum benefit from this book, we recommend the following study plan for each chapter.

Step 1: Go through the entire opening discussion about the fundamentals and concepts.
Step 2: After learning the theory/concept, follow the illustrative examples to get an understanding of the theory/concept.

Overall the whole content of the book is an amalgamation of the theme of physics with ahead-of-time problems, which
equips the students with the knowledge of the field and paves a confident path for them to accomplish success in the JEE.

With best wishes!
B.M. Sharma
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1.2 Wawes & Thermodynamics

HEAT

Heat is a form of energy which appears when two bodies at
different temperatures come into contact and flows from the
body at higher temperature to that at lower temperature. It is
energy in motion or energy in transit. Heat is not a property
of a system. A system can give out or absorb heat, but does
not contain heat. It is the form of energy which determines the
change in thermal state of a body and is defined as the flow
of energy from one body to the other due to difference in the
degree of hotness of two bodies (temperature). It flows from
the body which is at a high temperature to the other at low
temperature.

The energy associated with configuration and random
motion of the atoms and molecules within a body is called
internal energy and the part of this internal energy which is
transferred from one body to the other due to temperature
difference is called heat.

One calorie is defined as the amount of heat energy required
to raise the temperature of | g of water through 1°C (more
specifically from 14.5°Cto 15.5°C).

As heat is a form of energy it can be transformed into others
and vice versa. For example, thermocouple converts heat energy
into electrical energy, resistor converts electrical energy into heat
energy. Friction converts mechanical energy into heat energy.
Heat engine converts heat energy into mechanical energy.

Here it is important that whole of mechanical energy, i.e.,
work can be converted into heat but whole of heat can never be
converted into work.

Temperature

Temperature is defined by zeroth law of thermodynamies,
which states that when two bodies A and B arg/Separately. in
thermal equilibrium with a third body C, then 4 and B are also
in thermal equilibrium with each other (thermal equilibrium
implies equality of temperature). Temperatufe isa scalar quan-
tity which is a property of all thermodynamiic_systems such
that the equality of temperature is‘necessary,and sufficient for
thermal equilibrium.

1. Temperature is one of the seven fundamental quantities
with dimension [0].

2. Ttis a scalar physical quantity with SI unit kelvin.

3. When heat is given to a body and its state does not change,
the temperature of the body rises and if heat is taken from a
body its femperature falls, i.e., temperature can be regarded
as the effect of cause ‘heat’.

4. According to the kinetic theory of gases, temperature
(macroscopic physical quantity) is a measure of average
translational kinetic energy of a molecule (microscopic
physical quantity).

o 3
Temperature o kinetic energy [As E= ERT]

5. Although the temperature of a body can be raised without
limit, it cannot be lowered without limit and theoretically

limiting low temperature is taken to be zero of the kelvin
scale.

6. Highest possible temperature achieved in laboratory is
about 10° K, while the lowest possible temperature attained
is 10°K.

7. Branch of physics dealing with production and
measurement of temperatures close to 0 K is known as
cryogenics, while that dealing with the measurement of
very high temperature is called as pyrometry.

8. Temperature of the core of the sun is 107K while that of its
surface is 6000 K.

9. Normal temperature of human body is 310.15 K =37°C=
98.6°F.

10. NTP or STP implies 273.15 K (0°C = 32°F).

As the temperature is measured by the value of the
thermodynamic property of a suhstaﬂﬁe,;.é-.-,_ a property which
varies linearly with the temperature, two fixed points are
needed to define a temperature scale.

These two fixed points‘in modem thermometry are taken as

1. Triple point of water, i.€. the state of water where the liquid,
solid and vapour. phases of water coexist in equilibrium.
It is characterized by unique values of temperature and
pressure. N

2. On this scale; the othér fixed point may be taken as the
absolute zero.

We thénmeed o assign some numbers to these two fixed points.
The lowesttemperaturemay be taken as zero. The triple point of
wateron Celsius scale is 0.01°C. Thus the absolute temperature
7T*fortriple point of water will be given by

T=1¢+273.15=0.01 +273.15=273.16 K
7=273.16 K (triple point of water)

Thermometry

An instrument used to measure the temperature of a body is
called a thermometer.

The linear variation in some physical property of a
substance with change of temperature is the basic principle of
thermometry and these properties are defined as thermometric
property (x) of the substance.

x may be (i) length of liquid in capillary:
(ii) pressure of gas at constant volume;
(iii) volume of gas at constant pressure and

(iv) resistance of a given platinum wire:

In old thermometry, two arbitrarily fixed points ice and steam
point (freezing point and boiling point at 1 atm) are taken to -
define the temperature scale. In Celsius scale, freezing point of
water is assumed to be 0°C while boiling point 100°C and the
temperature interval between these is divided into 100 equal
parts,

So, if the thermometric property at temperatures 0°C, 100°C
and T.°C is x,, x,40 and x, respectively, then by linear variation
(v =mx + ¢) we can say that



O=ax,+b (i)
100=ax;0 +b (ii)
. =ax+b (1ii)
7.-0 X—2X
From these equations 1000 -
1= —x_'—xl)-x 100°C
Xigo — Xo

In modem thermometry instead of two fixed points only one
reference point is chosen (triple point of water 273,16 K at which
ice, water and water vapours coexist).

So, if the values of thermometric property at 0 K, 273.16 K
and Ty K are 0, x;, and x, respectively, then by linear variation
(¥ =mx -+ ¢) we can say that

O=ax0+b ()
273.16=axx; +b (ii)
T.=axx+b (iif)

From these equations

3 16 x

Tp= 273.16[iJ K
X7,

Measurement of Temperature

There are different systems of measurement of temperature.
The lower fixed point (LFP) and the upper fixed point (UFP)
in any system of units are corresponding to freezing point and
boiling point of water at | atm.

For different system of units the LFP and UFP are given as
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Sol. We can use Eq. (i) to convert degree celsius into
Fahrenheit and kelvin.

a. Temperature in Fahrenheit is given by
T = 2T +32°F =2(-195.81) + 22 =-32046°F

b. Temperature in Kelvin 7, =273.15 K — 195.81 K =

713K

A convenient way to change one scale to another is to
remember the freezing and boiling points of water in each
form:

Teere =32.0°F =0°C=273.15K

- Tboil :212°F=100°C
To convert from Fahrenheit to C_éf?.i"nis_:u,-_. subtract 32 (the
freezing point) and then adjust the scale by the liquid range
of the water

(100=01°C _5°C
(212-32°F 9°F

A Kelvin is the same 8ize change as a degree celsius, but the
Kelvin scale takes its zero point at absolute zero, instead of
the freezing point _o':f":waten:"l"herefore, to convert from Kelvin
to Celsius; subtract273.15 K from given Kelvin temperature.

Scale factor =

gil 8251 Two ideal gas thermometers A and
B use oxﬂygen and hydrogen, respectively. The following
ohservauons are made:

Temperature

Pressure
thermometer A

Pressure
thermometer B

Lower fixed | Upper fixed Duffémﬁ&
System of units | Units | point (LFP) | point (UFP) | UFP = LFP
Degree celsius °C 0°C 100°C 100
(centigrade) B
. Kelvin scale K 273.15K 3INBSK | 100
(SI unit) 4 > .
Fahrenheit o 32°E S0\ 212°%E 180

Temperature on one scale‘can beéiconverted into other scale
by using the following identity.

Reading on any scale — lower fixed point (LFP)  Constant for
Upper fixed point (UFP) - lower fixed point(LFP) all scales

The relation between Celsius (C), Kelvin (K), Fahrenheit (F)

and any other new scale € is
C-0_F-32_K-273_0-6, Q)
100 180 100 n

where n is the number of divisions between ice point and steam
point on the new scale and @ is the ice point on it.

LHius ; Liquid nitrogen has a boiling point
of —195.81 C at atmospheric pressure. Calculate this
temperature (a) in degrees Fahrenheit and (b) in kelvin.

Triple point of water
Normal melting point of

sulphur

1.250 x 10° Pa

1.797 x 10° Pa

0.200 x 10° Pa

0.287 x 10° Pa

a. What is the absolute temperature of normal melting
point of sulphur as read by thermometer A and B?

b. What do you think is the reason for slightly different
answers from A and B?

Sol.
a. Forthermometer A,

T,=273K, P, = 1.250 % 10° Pa

We have 7T = Pixﬂr

ir

- % X 273 =392 46K
. x

For thermometer B,
T,=273K, P,=0.200x 10°Pa

We have T=-£xr

ir
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_ 0.287x 10° x 273

0200x10° 3OLT5K

b. The slight difference in the tempcratures as read by two
thermometers is due to the fact that oxygen and hydrogen
do not behave like an ideal gas.

What will be the following temperatures
on the Kelvin scale: a.37°C, b. 80°F, c. -196°C?

Sol.
a. Temperature on Kelvin scale T, is related to temperature
7. on Celsius scale as

T,=T.+273 .

or T,=37+273=310K
b. Temperatures T, on Kelvin scale and 7, on Fahrenheit
scale are related as '
T,-273 T -32
373-273 212-32

of Tk—2'?3=T =32

100 180
ot Ti= %(n —32)+273
here T, = 80°F; thus

I.= 2(80 —32)+273=299.66 K

¢. Again from relation used in part (a)

T,=T.+273=-196+273 =77 K

CALORIMETRY

This is the branch of heat transfer that deals with the mea-
surement of heat. The heat isiusually measured in calories or
kilocalories. )

One Calorie
One calorie is the quantity of heat required to raise the
temperature of 1 g of water by 1°C

Mechanical Equivalent of Heat (J)

According to Joule, work may be converted into heat and vice
versa. The ratio of work done () to heat produced (Q) by that
work without any wastage is always constant.

W/Q = constant

This constant is called mechanical equivalent of heat (J). The
value of this constant is taken as 4.18 J/cal.

TIRETSICERE In the Joule experiment, a mass of 20k
falls through 1.5 m at a constant velocity to stir the water i
a calorimeter. If the calorimeter has a water equivalent
2 g and contains 12 g of water, what is f, the mechanict
equivalent of heat, for a temperature rise of 5.0°C?

Sol. Expressing APE in Joules and Q in Calories, we have

_APE _ mgy _ 20(9.8)(1.5)
f= 0 mecAr (12+2)(1)(5.0)

=42 J/cal

Thermal Capacity and Water Equivalent

1. Thermal capacity: It is defined as the amount of hat
required to raise the temperature of the whole body (mss
m) through 1°C or 1 K.

acity = JERE

Thermal capacity =H = 7

The value of thermal capagity ofa body depends npon he
nature of the body afidits mass,
Dimension: | ML'T~¢™ | sunitt cal/°C (practical) J/K (S

2. Water equivalent: Water equivalent of a body is defined
as the mass of water which would absorb or evolve the sime
amount of hieat asis done by the body in rising or faling
through the same range of temperature. Itis represented by 1V,

If mm =mass of the body, ¢ = specific heat of body, AT = rise
in temperature.
Then heat given to body

AQ = mcAT (1)

If:same amount of heat is given to ¥ grams of water and its

“temperature also rises by AT.

Then heat given to water
AQ=Wx1x AT [AS € e = 1] (i1)
From Egs. (i) and (ii), AQ = mcAT =W x 1 X AT
Water equivalent (W) = mc grams
Unit: kg (ST); dimension: [ML°T °]

Note:
« Unit of thermal capacity is J/kg while unit of water
equivalent is kg.
« Thermal capacity of the body and its water equivalent
are numerically equal. _
o If thermal capacity of a body is expressed in terms of
mass of water it is called water equivalent of the body.

Specific Heat

1. Gram specific heat: When heat is given to a body and
its temperature increases, the heat required to raise the
temperature of unit mass of a body through 1°C (or K) is
called specific heat of the material of the body.



If O heat changes the temperature of mass m by AT

Specific heat ¢ = " .
mAT
" Units: cal/g x °C (practical), J’kg * K (SI); dimension:

[L*T267]

2. Molar specific heat: Molar specific heat of a substance
is defined as the amount of heat required to raise the
temperature of 1 g mole of the substance th:ough a unit
degree; it is represented by C. .
By definition, 1 mole of any substance is a quantity of the
substance, whose mass M grams is numerically equal to the
molecular mass M.

Molar specific heat = M x gram specific heat

or C=Mc
o2 10
mAT ~ u AT
[Asc— and u T:I
mAT M
il
UAT

Units: cal/mol x °C (practical), J/mol x kelvin (SI); dimension:
[ MLZ '9 -1 -|]

Important Points

1. Speczﬁc heat for hydrogen is maximum (3.5 cal!g x °C)
and for water, it is | cal/g x °C.

For all other substances, the specific heat is less than
| cal/g x °C and it is minimum for radon and actinium
(=0.022 cal/g = °C). L

2. Specific heat of a substance also depends’on the state of
the substance, i.e., solid, liquid or gas.

For example, C, =0.5cal/g°C (solid), C.... =
1 cal/g * °C (liquid) and Coeam = 0-4% callg x °C (gas)

3. The specific heat of a substance when it:amelts or boils at
constant temperature is infinite,
W, W
5 & mAT  m>Q '
4. The specific heat of a substance when it undergoes
adiabatic changes is zero,

(As AT =0)

As C=—<-=——=0 (As 0 =0)

5. Specific heat of a substance can also be negative.
Negative specific heat means that in order to raise the
temperature, a certain quantity of heat is to be withdrawn
from the body.

For example, specific heat of saturated vapours.

: A 60 kg boy running at 5.0 m/s while
plawng basketball falls down on the floor and skids along

on his leg until he stops. How many calories of heat are
generated between his leg and the floor?
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Assume that all this heat energy is confined to a volume of
2.0 cm?’ of his flesh. What will be temperature change of the
flesh? Assume ¢ = 1.0 cal/g °C and p = 950 kg/m® for flesh.

Sol. The boy’s kinetic energy is changed to heat energy.

Set Q = (mv*)/2 =[60(25)] /2 =750) =179cal.

from Q=cpV AT, 179 cal =(1.0 cal /g°C)
(0.950 g/cm*)(2.0 cm®) AT, whence AT =94°C

ATV @R An electric heater supplies 1.8 kW of

power in the form of heat to a tank of water. How long
will it take to heat the 200 kg of water in the tank from
10°C to 70°C ? Assume heat losses to the surroundings to
be negligible.

Sol. The heat added is (1.8 J/s) ¢ ;

The heatabsorbed is cm AT = (4484kI/kg K )(200kg) (60K)=
5.0 x 10* kJ '

Equation heats, t=2.78%10*s=7.75h

Specific Heat‘of Solids

When a solid is heated through a small range of temperature,
its volume remains more or less constant. Therefore specific
heat of a solid may be called its specific heat at constant vol-
ume'C,
‘From the graph it is clear that at 7= 0, C, tends to zero
‘With rise in temperature, C, increases and becomes

'-cmlstam 3R = 6 cal/mole-kelvin = 25 J/mole-kelvin at some
\particular temperature (Debye temperature)

For most of the solids, Debye temperature is close to room
Eemperature,

X
— T Debye temp.

Fig. 1.1

Specific Heat of Water

The variation of specific heat with temperature for water is
shown in Fig. 1.2. Usually this temperature dependence of
specific heat is neglected.

From the graph:
Temperature (°C) 0 15 35 50 100
Specific heat (cal/g x °C) | 1.008 | 1.000 | 0.997 | 0.998 | 1.006

As specific heat of water is very large, by absorbing or
releasing large amount of heat, its temperature changes by
small amount. This is why it is used in hot water bottles or as
coolant in radiators,
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% When specrﬁc heats are measured, the values
ed are also found to depend on the conditions of the
ent. In general, measurements made at constant
presmre are different from those at constant volume. For
solids and liquids, this difference is very small and usually
neglected. The specific heats of gases are quite different
under constant pressure condition (c) and constant volume
“{c,). Int the chapter ‘Kinetic Theory of Gases and First Law
of Thermodynamics’ we have discussed this topic in detail.

& What is wrong with the following state-
ment: ‘Gwen any two bodies, the one with the higher tem-
perature contains more heat’.

Sol. The statement shows a misunderstanding of the concept
of heat. Heat is a process by which energy is transferred, nota
form of energy that is held or contained, If you wish to speak
of energy that is ‘contained’, you speak of internal energy,
not heat.

Further, even, if the statement used the term ‘internal
energy’, it would still be incorrect,
specific heat and mass are both ignored. A 1 kg mags of

water at 20°C has more internal energy than a L Kgumassef

air at 30°C.

Similarly, the earth has far more internal energy than a drop
of molten titanium metal. :

Correct statements would be: 1. ‘Given any two bodies
in thermal contact, the one with¢the higher temperature
will transfer energy to the othér by heat’. 2. ‘Given any
two bodies of equal mass, the onewith the higher product
of absolute temperature and speeifie heat contains more
internal energy’. All to say is that internal energy depends
not only on temperature but also on mass and nature of
body.

i = Two bodies have the same heat capacity.
If they are combmed to form a single composite body, show
that the equivalent specific heat of this composite body is
independent of the masses of the individual bodies.

Sol. Let the two bodies have masses m,, m, and specific heats
s, and s,. Then

S, = Sy OF /i, = 8,05,

Let s = specific heat of the composite body.

Then (m, +my) s =ms, T s, =2 ms,

since the effects of

2my5,

_ 2mys
my +my(s1/s;)

_ 25,
5y +5

my +m,

u!"‘“"*ﬁﬁ@ &‘é The temperature of a silver bar rises
by 10.0°C when it absorbs 1.23 kJ of energy by heat.
The mass of bar is 525 g. Determine the specific heat of
silver.

Sol. We finid its specific heat from the definition, which is con-
tained in the equation Q = me,, AT for energy input by heat
to produce a temperature change. Solving we have

mAT

123%10°J
=——"7 " ° 984 Jke°C
(0.525kg)(10.0°C), 8

Citver =

slver

PUTTG ST E  The air temperature above coastal
areas is profoundly influenced by the large specific heat of
water. One reason is that the energy released when 1 m® of
water cools by lf'_C_ will raise the temperature of a much
larger volume__of'_air_"]_a_y 1°C. Find this volume of air. The
specific heat of air is approximately 1 kJ/kg®C. Take the
density of air tabe 1.3 kg/m>.
Sol. Themass. ._d;f 1 m’® of water is specified by its density,
=p V=(1.00 x 10° kg/m*)( 1 m?) =1 x10? kg

When.| m*of water cools by 1°C, it releases energy

Op = meAT =(1x10" kg)(4186 J /kg°C)—1°C)=—4%10°]

where the negative sign represents heat output. When + 4 x 10 ]
is transferred to the air, raising its temperature by 1°C, the
volume of the air is given by Q. = mcAT = pVcAT

0. _ 4x10°J

= = =3x10’m?
pcAT  (1.3kg/m*)(1x10° Jkg°C)(1°C) e

The volume of the air is a thousand times larger than the
volume of the water.

pilCenT e SEs  James Joule tested the conversion
of mechanical energy into internal energy by measuring
temperatures of falling water. If water at the top of a Swiss
waterfall has a temperature of 10.0°C and then falls 50.0
m, what maximum temperature at the bottom would Joule
expect? He did not succeed in measuring the temperature
change, partly because evaporation cooled the falling water
and also because his thermometer was not sufficiently
sensitive.

Sol. The temperature change can be found from the potential
energy that is converted to internal energy. The final temperature
is this change added to the initial temperature of the water.
The gravitational energy that can change into internal
energy is AL, = mgy. It will produce the same temperature



change as the same amount of heat entering the water from a
stove, as described by O = meAT. Thus, mgy = mcAT.

8y _ (9.80m/s”)(50.0m)
¢ 4.186x10J/kg°C

Isolating AT, AT = =0.117°C

T, =T+AT=10.0°C+0.117°C=10.1°C

The final temperature might be less than we calculated since
this solution does not account for cooling of the water due to
evaporation as it falls.

Latent Heat

= When a substance changes from one state to another
state (say from solid to liquid or liquid to gas or from
liquid to solid or gas to liquid) then energy is either
absorbed or liberated. This heat energy 1s called latent
heat. )

+ Nochange in temperature is involved when the substance
changes its state. That is, phase transformation is an
isothermal change. Ice at 0°C melts into water at 0°C.
Water at 100°C boils to form steam at 100°C.

* The amount of heat required to change the state of the mass
m of the substance is written as: AQ = mL, where L is the
latent heat. Latent heat is also called as heat of transfor-
mation.

» Unit: cal/g or J/kg and dimension: [L*T ],

= Any material has two types of latent heats.

i. Latent heat of fusion: The latent heat of fusion is the
heat energy required to change 1 kg of the material in
its solid state at its melting point to 1 kg of the material
in its liquid state. It is also the amount of heat cnergy
released when at melting point | kg of liquidichanges to
1 kg of solid. For water at its normal freezing temperature
or melting point (0°C), the latent heat of Fusiau (or latent
heat of lce) 1S

L,=L, =80callg=6 ki/mol = 336 kl/kg

ii. Latentheatof vapounzatt_qn. Thelg;errt Heat of vapourization
is the heat energy requiréd to'change 1 kg of the material in
its liquid state at its boiling pointto | kg of the material in its
gaseous state. It is also the amount of heat energy released
when 1 kg of vapour changes into 1 kg of liquid. For water at
its normal boiling point or condensation temperature (100°C),
the latent heat of vapourization (latent heat of steam) is

Ly=L,,,, = 540 cal/g = 40.8 kl/mol = 2260 kl/kg

st

« In the process of melting or boiling, heat supplied is
used to increase the internal potential energy of the
substance and also in doing work against external
pressure  while internal kinetic energy remains
constant. This is the reason that internal energy of
steam at 100°C is more than that of water at 100°C.
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« It is more painful to get burnt by steam rather than by
boiling water at same temperature. This is so because
when 1 g of steam at 100°C gets converted to water
at 100°C, then it gives out 536 cal of heat. So, it is
clear that steam at 100°C has more internal energy than
water at 100°C (i.e., boiling of water).

* In case of change of state if the molecules come closer,
energy is released and if the molecules move apart, en-
ergy is absorbed.

» Latent heat of vapourization is more than the latent
heat of fusion. This is because when a substance
gets converted from liquid to vapour, there is a large
increase in volume, Hence, more amount of heat is
required. But when a solid gets converted to a liquid,
then the increase in volume is negligible. Hence, very
less amount of heat is required. So, latent heat of
vapourization is more than Lhe'fateﬂt heat of fusion.

» After snow falls, the temiperature of the atmosphere
becomes very low: This is because the snow absorbs
the heat from the: al:mosphere to melt down. So, in
the mountains, when'snow falls, one does not feel too
cold, but when ice melts, he feels too cold.

+ There is more shivering effect of ice cream on teeth as
compared to that of water (obtained from ice): This is
because when ice cream melts down, it absorbs large
amount of heat from teeth.

Some water at 0°C is placed in a large

‘insulated enclosure (vessel). The water vapour formed is
~ pumped out continuously. What fraction of the water will

ultimately freeze, if the latent heat of vapourization is seven

~ times the latent heat of fusion?

Sol. Let us learn the application of theory this illustration.

Let m = mass of water, /= fraction which freezes
L, = latent heat of vapourization
L, = latent heat of fusion

Mass of water frozen = mf

Heat lost by freezing water = m fL,

Mass of vapour formed =m (1 — f)

Heat gained by vapours =m(1 — f)L,

Now heat loss = heat gain:
mfL,=m (1 = f) x 7L,
f=7-=T7 or f=7/8

2 How many calories are required to
change ex actly 1 g of ice at —10°C to steam at atmospheric
pressure and 120°C? [Assume the specific heat of steam at
a constant pressure of 1 atm is 0.481 cal/(g°C).]

Sol. The first stage is the warming of the ice from -10°C to the
melting point (0°C).

The specific heat capacity oflice is 0.50 cal/(g°C). Therefore,
the heat required in the first stage is given by AH, = mc,
At =(1.00 g)[0.50 cal/(g°C)](10 °C) = 5.0cal.
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The second stage is the melting of the ice at 0°C and 1 atm of
pressure . The latent heat for the melting of ice is 79.8 cal/g. AH,
—79.8 cal. The third stage is the heating of the water from 0°C
to 100°C, the boiling point, so the heat required is given by
AH, = me; Aty =(1.00g)(1.000cal/g °C)(100°C) =100 cal.

The fourth stage is the boiling of the water at a temperature
of 100 ©C and at a constant pressure of 1.00 atm. According to
Table. the latent heat for the boiling water at 1.00 atm is 540 cal/g,

S0 AH, = mL, = (1.00g)(540cal/g) =540cal.

The fifth and final stage is the heating of the steam from 100°C
to 120°C (at a constant pressure of 1.00 atm).

Assuming that between 100°C and 120°C the specific heat
capacity of steam is constant and has the value 0.481 cal/(g°C)
glvmwcﬁnd AH = mcsAts = (1g)[0.481 cal/(g°C)] (20°C)

= 9.62 cal

The total heat réquirement AH = AH, + AH, + AH; + AH, +
AH; = (5.0+79.8+100+540+9.62)=734.4 cal.

Princi ple of Calorimetry

When two bodies (one being solid and other liquid or both
being liquid) at different temperatures are mixed, heat will
be transferred from body at higher temperature to a body at
lower temperature till both acquire same temperature. The
body at higher temperature releases heat while body at lower
temperature absorbs it, so that

Heat lost = Heat gained

ie.. the principle of calorimetry represents the law of
conservation of heat energy.

« Temperature of mixture (7) is always > lower,
" temperature (7,) and < higher temperature (L), 1.8,
T.28=T,

i.e., the temperature of mixture can never:be lesser
than lower temperatures (as a body:cannot be cooled
below the temperature of €ooling body) and greater
than higher temperaturg({(@s. a budy cannot be heated
above the temperature of heating body). Furthermore
usually rise in temperature of one body is not equal to
the fall in temperature of the other body though heat
gained by one body is equal to the heat lost by the
other.

« When temperature of a body changes, the body releases
heat if its temperature falls and absorbs heat when
its temperature rises. The heat released or absorbed
by a body of mass m is given by Q = mc AT, where
¢ is specific heat of the body and AT change in its
temperature.

» When state of a body changes, change of state takes
place at constant temperature [m.pt. or b.pt.] and heat
released or absorbed is given by Q = mL, where L is
latent heat. Heat is absorbed if solid converts into liquid
(at m.pt.) or liquid converts into vapours (at b.pt.) and is

released if liquid converts into solid or vapours conver
into liquid.

« Iftwo bodies 4 and B of masses m, and m, at tempera-
tures T and T; (T, > T;) and having gram specific heat
c¢,and ¢, are placed in contact,

Heat lost by 4 = Heat gained by B

or me(Ty T)=me, (T-T,)
(where T = temperalu:e of ethbnum)
= e, ¥ el
. mCy + Mals
i. If bodies are of same material ¢, = ¢, then T' = il el 1Y
m+mi,
ii. Ifbodies are of same mass (m, = m,) then T = Boit-Toi
o+
iii. If bodies are of same material and of'equal masses (m; = m,
= ) then T = A 42-T2

YT s ke Calculate the heat of fusion of ice
from the following data for ice at 0°C added to water. Mass
of calorimeter = 60 g, mass of calorimeter + water = 460 g,
mass of calorimeter +water + ice = 618 g, initial temperature
of water = 38°C, final temperature of the mixture = 5°C.
The specific heat of calorimeter = 0.10 cal/g/°C. Assume
thatthe calorimeter was also at 0°C initially.
Sel. Mass of water =460 — 60 =400 g
massofwe 618 —460=158 g

Heat lost by water = heat gained by ice to melt + heat gained
by (water obtained from melting of ice + calorimeter) to reach

s°C

=400 % 1% (38 —5)=158x L+ 158 x | x5+60%0.1x5
(where L is the latent heat of fusion of ice)
= L =78.35 cal/g

i # A lump of ice of 0.1 kg at —10°C is
put in 0.15 kg of water at 20°C. How much water and ice
will be found in the mixture when it has reached thermal
equilibrium? Specific heat of ice = 0.5 keal/kg/K and its
latent heat of melting = 80 keal/kg.
Sol. Heat released by 0.15 kg of water in being cooled to
0°C =0.15 % 1 x 20 =13 keal

Heat absorbed by ice from —10°C to 0°C =
10=10.5 keal

The balance heat is available for melting ice. Let m kg of
ice melt.

Thenm > 80=2.5 or m=0.03kg

Thus the final temperature is 0°C with 0.07 kg of ice and
0.18 kg of water.

ﬂ 5. How should 1 kg of water at 5°C be
divided into two parts so that if one part turned into ice at

0.1 x 0.5 %




0°C, it would release enough heat to vapourize the other
part? Latent heat of steam = 540 cal/g and latent heat of
ice = 80 cal/g.

Sol. L et the mass be divided into x grams (for ice) and (1000
— x) grams (for vapour).

Heat released by x grams of water=x x 1 x 5+x x 80

Heat absorbed by (1000 — x) grams of water

= (1000 — x) x 1% 95 + (1000 — x) x 540

Assuming that the conversion of the other part takes place at
100°C.

85x =95 (1000 — x) + 540 (1000 —x) or x=882¢g

Thus the mass is to be divided into 882 g for conversion into -

ice and 118 g for conversion into vapour.

Tiseeat iy When a block of metal of specific
heat 0. l caUgf‘C and weighing 110 g is heated to 100°C
and then quickly transferred to a calorimeter containing
200 g of a liquid at 10°C, the resulting temperature is 18°C.
On repeating the experiment with 400 g of same liquid
in the same calorimeter at same initial temperature, the
resulting temperature is 14.5°C. Find

a. Specific heat of the liquid.
b. The water equivalent of calorimeter.

Sol. Let s be the specific heat of the liquid and W be the water
equivalent of the calorimeter.

Heat lost by the block = heat gained by (liquid + calorimeter)
For the first case:

= 110 % 0.1 x (100 = 18)=200 x 5
x (18— 10)+ Wx 1 x (18- 10),
= 16005 + 8 =902 ' )
For the second case:
= 110 x 0.1 x (100 — 14.5) =400 xs
x (14.5 - 10) + Wax 1x(1 4.5 5:10)
= 1800s + 4.5 =940.5 (i1)
On solving Eqs. (1) and (ii){ we get s =048 cal/g/°C and W
=16.6 g )

The temperatures of equal masses of
three different liquids 4, B and C are 12°C, 19°C and 28°C,
respectively. The temperature when 4 and B are mixed
is 16°C, while when B and C are mixed, it is 23°C. What
would be the temperature when A and C are mixed?

ol 1 S

Sol. Letm = mass of each liquid, when 4 and B are mixed,
Heat lost by B = heat gained by 4

>msy(19-16)=ms, (16—

When B and C are mixed,
Heat lost by C' = heat gained by B

>mS-(28-23)=ms,(23 - 19) = Ss.=4s, (i1)

12) = 3s,=4s, (i)
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From Eqgs. (1) and (i1), we get .
16s, =125, = 155, (iii)
When 4 and C are mixed, Let € = final temperature
Heat lost by C = heat gained by A4

> msc(28-0)=ms, (0 -12)
Using Eq. (iii), we get
= 155.(28—-60 )=15s5,(0 - 12)

= 168, (28 -0 )=15s,(0 - 12)
On solving for 8, we get 6= SOEe F1Ax o
: 16+15
= 6 = 20.26°C

Atubeleads froma flask in which water

is hmlmg under atmospheric pressure fo a calorimeter. The
mass of the calorimeter is 150 g, its'specific heat capacity
is 0.1 cal/g/°C, and it contains originally 340 g of water at
15°C. Steam is allowed o condense in the calorimeter until
its temperature incréases t0 71°C, after which total mass of
calorimeter and contents are found to be 525 g. Compute
the heat of condensation of steam.

Sol. Mass of calorimeter and contents before passing steam
= (150 + 340) =490 g
‘mass after passing steam =525 g
= mass of steam which condenses = (525-490)g=35g

Let [ = latent heat of steam.

Heat lost by steam = heat gained by water +
heat gained by calorimeter
3SL435x1(100-71)=340=1x (71 —=15)+ 150
x 0.1 x(71-15)
= L =539 cal/g

JUNSTTTM®IE  Determine the final result when

200 g of water and 20 g of ice at 0°C are in a calorimeter

having a water equivalent of 30 g and 50 g of steam is
passed into it at 100°C

Sol. When steam is passed, the final temperature can be 0°C,
between 0°C and 100°C, or 100°C.
We will consider all three possibilities.

Case I
Final temperature = 0°C
In this case, all the steam condenses and then cools down to 0°C.

Heat given out by steam
= 50 % 540 + 50 x | x (100 —0) = 32000 cal

32000

Mass of ice which will melt by this heat = =400 g

But there is only 20 g of ice in the calorimeter.

Hence final temperature cannot be 0°C.

Case IT

Final temperature =@ and 0 < <100
Heat lost by steam = heat gained by (ice + water + calorimeter)
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— 50 >< 540+ 50x 1 x(100-6)=20x80+(20+200+30)x1

x (8-0)=6=101.3C
The assumption(0 <0 <100)is proved to be wrong. Hence,
the final temperature cannot be between 0°C and 100°C
= T he final temperature will be 100°C

Case IZI

Let m = mass of steam condensed.
Heat lost by steam = heat gained by ice to melt + heat gained
by (water + water + calorimeter) to reach 100°C

= m (540) = 20 x 80 + (20 + 200 + 30) = (100 - 0)

= m=26600/540=49¢g

= 49 g of steam gets condensed and the final temperature
is 100°C.

: 22  What will be the final tempcrature
when 150 g of ice at 0°C is mixed with 300 g of water at

50°C. Specific heat of water = 1 cal/g/°C. Latent heat of

fusion of ice =80 cal/g.
Sol. Let us assume that T > 0°C

Heat lost by water = heat gained by ice to melt + heat gained

-by water formed from ice
=300x1x(50-T7)=150x80+150x 1x(T —0)
=T=67°C

Hence our assumption that 7 > 0°C is correct.

In a calarimeter (water equivaleni

= 40 g) are 200 g of water and 50 g of ice all at 0°C.
30 g of water at 90°C is poured into it. What will be the final
condition of the system?

Sol. Let us assume that all ice melts and temperature of water
rises beyond 0°C. Thus we will assume that 7 >0.

Heat lost by water added = heat gained by'icé to melt
+ Heat to warm water formed from ice gpdwa-ter added
+ Heat gained by calorimetercan..

=30x1x(90-T)= ‘iﬂx‘80+f‘§0+200)><1
$(T—-0)+40x1x(T-0)

= 2700 - 307 = 4000+ 2507 +40T

=T=-4.1°C

Hence our assumption thatT >0is wrong, since hot water
added is not able to melt all of the ice.

Therefore the final temperature will be 0°C.

et m = mass of ice finally left in the can.

Heat lost by water = heat gained by melting ice

—30x1%(90-0)=(50-m)x80 =m=16.25g

Finally there is 16.25g of ice and (200+30+33.75)=
266.75 g of water at 0°C.

Heating Curve

If heat is supplied at constant rate to a given mass m of a solil,
P and a graph is plotted between temperature and time, the
graph is as shown in Fig. 1.3 and is called heating curve. From
this curve it is clear that -
« In the region OA temperature of solid is changing with
time, so,

0 =mc, AT
or PAt = mc, AT (asQ = PA)

But as (AT/Ar) is the slope of temperature—time curve
¢ % (1/slope of line O4)

b.pt. C /U
G W.’J

Fig. 1.3

i.e., specific heat (or thermal capacity) is inversely
prépartional to the slope of temperature-time curve.

« In theregion AB temperature is constant, so it represents
change of state, i.e., melting of solid with melting point
7. At A melting starts and at B all solid is converted into
liquid. So between A and B substance is partly solid and
partly liquid. If L, is the latent heat of fusion.

P(t.—1,)
m

or L o length of line A8

Q=mLy or L,= [as O0=P(t.—1))]

i.e., latent heat of fusion is proportional to the length of
line of zero slope. (In this region specific heat— oo)

« In the region BC temperature of liquid increases so
specific heat (or thermal capacity) of liquid will be
inversely proportional to the slope of line BC, i.e.,

¢, « (1/slope of line BC)

» In the region CD temperature is constant, so it re-
presents the change of state, i.c., boiling with boiling
point 7}. At C all substance 1s in liquid state while at D
in vapour state and between C and D partly liquid and
partly gas. The length of line i is proportional to latent
heat of vapourization, i.e.,

L, =« Length of line CD
(In this region specific heat = o)

+ The line DE represents gaseous state of substance
with its temperature increasing linearly with time. The
reciprocal of slope of line will be proportional to specific
heat or thermal capacity of substance in vapour state.



wﬁm A substance is in the solid form at
0°C. The amount of heat added to this substance and its
temp erature are plotted in the following graph.

120 vissnC

80 b
b z
40= 1 :
TR EE N SR E RN R
0 1000
O —p (Calories)
Fig. 1.4

If the relative specific heat capacity of the solid substance
is 0.5, find from the graph (i) the mass of the substance;
(ii) the specific latent heat of the melting process and
(iii) the specific heat of the substance in the liquid state.

Specific heat capacity of water = 1000 cal/kg/K

Sol. 1000 cal of heat raises the temperature of the substance
from 0°C to 80°C.

1000 = m (1000 % 0.5) x 80
(. specific heat = relative sp. heat x of water)
or m=0.025 kg
Latent heat=200 x 5= 1000 cal (-
L = 40000 cal’kg

In the liquid state temperature rises from 80°C to 120°C, that
is, by 40°C after absorbing 600 cal.

0.0255>x40=600 or s=600 cal/kg/K

1 div reads 200 cal) =0.025 x L

Two bodies of equal masses aré heated
at a uniform rate under identical conditions. The change in
temperature in the two cases is shown "'gﬂil'p'hic'ally What
are their melting points?

Find the ratio of their specific heats and latent heats.

re
S0 O

Temperalu
F=s
(=]

(]
=]

Ll i
2-37% § 6 § 910
Time —9

=]

Fig. 1.5

Sol. The melting points of liquids I and 11 are 60°C and 40°C,
respectively. Let R be the rate of supply of heat. We note from
the graph that liquid I is heated through 60°C in 2 units of time
and that liquid IT is heated through 40°C in 4 units of time.

2ZR=mx¢, x60 and 4R=mxc, x40
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Hence, e 3

Cy 3

We note further that the temperature of I remains constant
for 4 units of time and that of II for 2 units of time.

4R=mL, and 2R=mlL, =%=2

Concept Application Exercise 1.1

1. The greater the mass of a body, the greater is its heat
capacity. Is this true or false?

2. The greater the mass of a body, the greater is its latent
heat capacity. Is this true or false?

3. The greater the mass of a body,the greater is its specific
heat capacity, True or false?

4. Can heat be added to a substance without causing the
temperature of thebady to rise? If so, does this contra-
dict the concept 0f heat as energy in the process of trans-
fer because of a temperature difference?

5. Can heat be gonsidered to be a form of stored energy?

6. Give an example of a process in which no heat is
transferred to op from a system but the temperature of
the systern changes?

7. The latent'heat of fusion of a substance is always less
than the latent heat of vapourization or latent heat of
subhmat: on of the same substance. Explain.

8. Suppose an astronaut on the surface of the moon took
some water at about 20°C out of his thermos and poured
it into a glass beaker. What would happen to the water?

9. Heat is added to a body. Does its temperature necessarily
increase?

10. When a hot body warms a cool one, are their temperature
changes equal in magnitude?

11. Steam at 100°C is passed into a calorimeter of water
equivalent 10 g containing 74 cc of water and 10 g of
ice at 0°C. If the temperature of the calorimeter and its
contents rises to 5°C, calculate the amount of steam
passed. Latent heat of steam = 540 kcal/kg, latent heat
of fusion = 80 kcal/kg.

12. Ice of mass 600 g and at a temperature of —-10°C is
placed in a copper vessel heated to 350°C. The resultant
mixture is 550 g of ice and water. Find the mass of the
vessel. The specific huat capacity of copper (¢) = 100 cal/
keg-K.

13. When a small ice crystal is placed in overcooled water it
begins to frecze instantaneously.

i. What amount of ice is formed from | kg of water
overcooled to —8°C? L of water = 336 x 10°J/kgand s
of water = 4200 J/kg/K.

ii. What should be the temperature of the overcooled

water in order that all of it be converted into ice at 0°C?
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14. An electric heater whose power is 54 W is immersed
in 650 cm® water in a calorimeter. In 3 min the water is
heated by 3.4°C. What part of the energy of the heater
passes out of the calorimeter in the form of radiant
energy?

15. An ice cube whose mass is 50 g is taken from a

refrigerator where its temperature was —10°C. If

no heat is gained or lost from outside, how much

water will freeze onto the cube if it is dropped into a

beaker containing water at 0°C? Latent heat of fusion

= 80 keal/kg, specific heat capacity of ice = 500 cal/
kg/K.

Equal volumes of three liquids of densities p,, p, and

p - specific heat capacities ¢,, ¢, and ¢, and temperatures

t,, &, and t, respectively, are mixed together. What is

the temperature of the mixture? Assume no changes in

volume on mixing.

17. Victoria Falls in Africa is 122 m in height. Calculate the
rise in temperature of the water if all the potential energy
lost in the fall is converted into heat.

18. Equal masses of three liquids 4, B and C are taken. Their
initialtemperaturesare 10°C,25°Cand40°C, respectively.
When A and B are mixed the temperature of the mixture
is 19°C. When B and C are mixed, the temperature of
the mixture is 35°C. Find the temperature if all three are
mixed.

19. An earthenware vessel loses 1 g of water per second
due to evaporation. The water equivalent of the vessel
is 0.5 kg and the vessel contains 9.5 kg of water. Find
the time required for the water in the vessel to cool 1@
28°C from 30°C. Neglect radiation losses. Latent heatof
vapourization of water in this range of temperatureis 540
cal/g.

20. A certain amount of ice is supplied heat'at:a constant
rate for 7 min. For the first 1 min, the temperature rises
uniformly with time; then it remain§ eénstant for the
next 4 min and again rises ata uniform rate for the last 2
min. Explain physically thése observations and calculate
the final temperature. £'ofice = 336 10° J/kg and ¢,
= 4200 J/kg/K.

21. 1 g steam at 100°C is passed in an insulated vessel
having 1 g ice at 0°C. Find the equilibrium temperature
of the mixture. Neglect heat capacity of the vessel.
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THERMAL EXPANSION

Figures 1.6 (a), (b) and (c) show molecules of solid, liquid
and gas, respectively, in their random motions. The atoms are
essentially in contact with one another. A rock is an example
of a solid. It can stand alone because of the forces holding its
atoms together.

A S
" a)
B
(a) @ (b) (c)

Fig. 1.6

Atoms in a liguid are also in close contact but can slide over
one another. Forces between them strongly resist attempts to
push them closer together and also hold them in close contact.
Water is an example of a liquid. It canflow, but it is also in-
close contact. It can flow, but it alse-remains in an open con-
tainer because of the forces between its atoms.

Atoms in a gas aré separated.by distances that are
considerably larger than their diameters. Gas must be held in a
closed container to prevent it from moving out freely.

Most substances expa.nd when their temperature is raised
and contract whem:cooled. There is an exception to this
statement: water .contracts' when its temperature is increased
from 0°C/to 4°C. Thus water has its minimum volume, and
hence maximum density, at 4°C.

_Atoms in solids are in close contact; the forces between
them allow the atoms to vibrate but not to move freely. These

“forces can be thought of as springs that can be stretched or
‘compressed. An individual molecule’s motion can be modelled

as a point-like particle oscillating in a parallel well caused
by the inter-atomic forces, which is parabolic for a Hooke’s

law spring (U(.r)=%.-‘c.r"). The mass oscillates in simple

harmonic motion between maximum and minimum positions.
The potential energy curve is not symmetrical as shown in
Fig.1.7. The variable r is the separation between a particle
and its nearest neighbour. At temperature 7, the total energy
is E, and its separation from its nearest neighbour lies between
¥t min @nd T, .., the average separation is ry,,. The U(r) is not
symmetrical, it is flatter to the right at larger r values. At higher
temperature the total energy E is higher; the particle spends
more time at r values towards less steep portion of the curve.
The average separation r,,, increases at higher temperatures.
Because r,,, > ry,, the average separation of the atoms or
molecules in the solid increases with increasing temperature.
When matter is heated without any change in state, it usually
expands. According to atomic theory of matter, asymmetry in
potential energy curve is responsible for thermal expansion. As
with rise in temperature the amplitude of vibration and hence
energy of atoms increases, hence the average distance between
the atoms increases. So the matter as a whole expands.
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Thermal expansion is minimum in case of solids but
maximum in case of gases because intermolecular
force is maximum in solids but minimum in gases.
Solids can expand in one dimension (linear expansion),
two dimension (superficial expansion) and three
dimension (volume expansion) while liquids and gases
usually suffers change in volume only.

The coefficient of linear expansion of the material of
a solid is defined as the increase in its length per unit

length per unit rise in its temperature.
AL 1

o =—X—
L AT

Similarly, the coefficient of superficial expansion

1

b=

and coefficient of volume expansion
Al
= —¥ —
V. AT
The value of &, § and y depends upon’ the nature of
material. All have dimension [9 ] and unit per °C.

AaW 1 AR AV 1
Asgt =— X — = —xXx— and ¥ =—x—
Se= T ar Y W T TV AT

" AL=LoAT, A= ABAP and AV =V)AT

Final length L'=L+AL=L(1+0AT) (1)
Final area A'= A+ A4 = A(1+ BAT) (ii)

Final volume Vi=V+AV = v(] +}rm") (iii)

If L is the side of square plate and it is heated by
temperature A7, then its side becomes L',

The initial surface area A= L’ and final surface area
A=L"

. £=[£)3=(£{H—O‘Aﬂ}3=(|+’am): =(1+2aAT)

L L

(using Binomial theorem)
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or A'= A(1+20AT)

Comparing with Eq. (i1), we get § = 2a
Similarly, for volumetric expansion

s 3 ]
V(B )| LAY T2 d TP (1 4 80ATS
Vv \L L

: (using Binomial theorem)
or V'=V(l+yAT)
Comparing with Eq. (iii), we get ¥ =3
So a:fy =123

i. For the same rise in temperatire.
Percentage change in.area = 2'X percentage change in
length.
Percentage change inwolume = 3 x percentage change in
length.

ii. The three coeﬁclents of expansion are not constant for
a given solidy Theirivalues depend on the temperature
range il which they-are measured.

iii. Thewaluesofc, f and y are independent of the units of
length. area and volume, respectively.

iv. Foranisotropic solids y = o, + &, + ., wherea,, . and
@, répresent the mean coefficients of linear expansion
along three mutually perpendicular directions.

7 The rectangular plate shown in Fig. 1.8
If the temperature increases by AT, each

has an area A.
dimension increases according to AL = aL AT, where a is
the average coefficient of linear expansion. Show that the
increase in area is A4 = 2a4; AT. What approximation
does this expansion assume?

je— | —jr

T

@

3
Fig. 1.8

Sol. We expect the area to increase in thermal expansion. It
is neat that the coefficient of area expansion is just twice the
coefficient of linear expansion.

T+ AT
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We will use the definitions of coefficients of linear and area

expansion.
From the diagram in Fig. 1.9, we see that the change in area is

AV = [Aw + wAl + AwAl

Since AJ and Aw are each small quantities, the product AwA/
will be very small as compared to the original or final area.
Therefore, we assume Aw Al « 0

Aw=woAT and Al=I[cAT
AA = IwoAT + wlaAT
A=lw,  we have

Since
We then: have

Finally, since AA =20 AAT

Gl o GemdE Amercury thermometer is constructed
as showwn in Fig. 1.10. The capillary tube has a diameter of
0.004 00 cm, and the bulb has a diameter of 0.250 cm.
neglecting the expansion of the glass, find the change in
height of the mercury column with a temperature change

of 30.0°C.
=) (=2
-
A Ah
-, -
T, T + AT,

Fig. 1.10

Sol. For an easy-to-read thermometer, the column should rise

by a few centimetres,

We use the definition of the coefficient of expansion.
Neglecting the expansion of the glass, the wolume of

liquid in the capillary will be AV = AAh, where¥ is the cross-

sectional area of the capillary. Let V, represent the volume of

the bulb.

AV=VAT
” AR,
Ah=[;’]yﬂ.’n‘"= 2 —— yAT

cip

4 (0.125 cm)’ i
2 _Odm) ) g5 %107/°C)(30.0°C) =3.55 ¢
= 3 {0,002 00 cm)? . ; "

This is a practical thermometer Glass expands so little as
compared to mercury that only the third digit of the answer
would be affected by including the expansion of the glass in our
analysis.

bl 4§ A metal rod A of 25 cm length
expands by 0.05 cm when its temperature is raised from

0°C to 100°C. Another rod B of a different metal of length
40 cm expands by 0.04 cm for the same rise in temperature,
A third rod C of 50 cm length made up of pieces of rods 4
and B placed end to end expands by 0.03 cm on heating
from 0°C to 50°C. Find the length of each portion of
composite rod C.

Sol. From the given data for rod A, we have

AL =¢a LAT
or a,= %L; = 25031500 =2 % 10%/°C
For rod B, we have AL =azLAT
or s = . S 10%/°C

BT LAT 40100

If rod € is made of segments of rod.4 and B of lengths /, and
I,, respectively, then we have at 0°C

14 I,=50¢m ()

AtT=50°C [, +F,=50.03cm
Thus ‘[, AT + 05, AT = 0.03 cm
or 2 x105% i, x50+107° x1, x50=0.03cm
or 28+ = 0—5{[})—3 %10 =60 cm (ii)

Selving Egs. (i) and (ii), we get /, = 10 cm and /, = 40 cm.

Determine the lengths of an iron rod

and a copper ruler at 0°C if the difference in their lengths
‘at 50°C and 450°C is the same and is equal to 2 cm. The

coefficient of linear expansion of iron =12 x 10°/K and that
of copper =17 x 107 /K.

Sol. Let x be the length of the iron rod at 0°C, y that of the
copper rod at 0°C, and ] the difference in lengths at7, and £,°C.

Then I=x(1+a,) —y( +tayt) (i)
and +l=x(l+at)—y(1 +tat) (ii)
Taking +1

I=x(1+at) —y(+a,h) (i)

from Eqs. (i) and (iii), we get

xa = ya, (iv)
from Egs. (i) and (iv), we get
lex 2x12%10™"
) = = =4,
S (I T
and x=_ﬁx£__
s —
2x17x107°
= x=——————cm=68cm
(17-12)x 10
Taking —1



2 +1a (6 +1) . 2 +1la,(t, +1,)
(=t )a:—a,)’ (h=t)(a:—a)

=6
e SN2 IR EXIG (A0 +30) o, o6 o =20 06126
Y T 450-50)(17 - 12) x 10”

—6
- 2x2+2x17x107°(450+50) m=2008.5 cm = 20.08 m

(450-50)(17-12)x10*

S0 e GUIEELE A steel ball initially at a pressure of
10° Pa is heated from 20°C to 120°C keeping its volume
constant. Find the final pressure inside the ball. Given that
coefficient of linear expansion of steel is 1.1 x 10°/°C and
Bulk modulus cf steel is 1.6 x 10" Nt/m?.

Sol. On increasing temperature of ball by 100°C (from 20°C
to 120°C), the thermal expansion in its volume can be given as

AV=y,VAT=3a VAT . (i)

Here it is given that no change of volume is allowed. This
implies that the volume increment by thermal expansion is
compressed elastically by external pressure. Thus elastic
compression in the sphere must be equal to that given in Eg.
(i). Bulk modulus of a material is defined as

increase in pressure AP
AVIV

B_—...

volume strain

Here the externally applied pressure to keep the volume of ball
constant is given as

v
AP=B x A? = B(3a AT

=1.6% 10" %3 = 1.1 x 0% 100"
=5.28 x 10° Nt/m®> = 5.28 % 10* Pa

Thus this must be the excess pressure inside the ball at 120°C
to keep its volume constant during heating,

] A steel rail 30 m long is firmly
attached to the roadbed only at its ends. The sun raises the
temperature of the rail by 5°C, causing the rail to buckle.
Assuming that the buckled rail consists of twe straight
parts meeting in the centre, calculate how much the centre
of the rail rises. Coefficient of linear expansion of steel is
12x10°/K.

Sol. As indicated in Fig. 1.11, we let the mitial length be 2s
and the final total length be 2(s+ As).

The height of the centre of the buckled rail is denoted by y.
Assuming that the standard coefficient & of linear expansion
can be used (in spite of the fact that the ends are anchored), we
have As = o sAT.

By the Pythagorean theorem

=J(s+As) =5* = 25As +(As)} = sy/20AT + (0AT )’
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Withs =15.0m, =12 x107%/K , and AT =50K, we obtain

= (15.0m),[(12x10%)+(6x10~) =0.52m

SW

>
25

Fig. 1.11
Variation of Density with Temperature

<
-

i. Suppose p, is the density of the substance at 0°C and at
any temperature £, it becomes p . As mass of the substance
remains constant at any temperaturé, we have

PoVo=Pq Va

Here ¥, and V, are the volumes of the substance at 0°C
and #°C, respectively.

Also =(l+y D
6204 Voh Vi1 +y 1)
- Po
or =
> P )
For'small value of ¥, we can approximate it as
pi=po(1-y1)

it. Ifp; and p, are the densities at #, and 1,, respectively, then
We ean write

o vi=p. 0

or PVl +ye)=p, V(1 +y 1)

_ o (I+7t)
or Pl_pl (]_-f—}’fl)

=p,(L+y ) —yt)=p;[1+y (& — 1]
(neglecting y, on being small)
__PizP
Pz(fz—'fl)

: = A small quantity of a liquid which
does not mix with water sinks to the bottom at 20°C, the
densities of the liquid and water being 1021 and 998 kg/m?,
respectively. To what temperature must the mixture be
uniformly heated in order that the liquid forms globules
which just float on water? The cubical expansion of
the liquid and water over the temperature ranges is
85 x 10-5/K and 45 x 10-/K respectively.

Sol. The liquid will float on water at the temperature at which
both of them have the same densities.

1021 998
1+85%10°A8  1+45%10°A8

= 1021 (1 +45 % 105 AB) =998 (1 + 85 x 10 Af)

D

cammnn
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= A =59°C =0, — 8, =59°C
= 6,=59+20="79°C

Expansion of Liquid

Liquids also expand on heating just like solids. Since liquids have
no shape of their own, they suffer only volume expansion. If the
liquid of volume ¥ is heated and its temperature is raised by A6
then

V,=V(1+y,A8)

(y , = coefficient of real expansion or coefficient of volume
expansion of liquid)
As liquid is always taken in a vessel for heating, if a liquid
is heated, the vessel also gets heated and it also expands.

=V(1+g5 Af)
(ys = coefficient of volume expansion for solid vessel)
So, the change in volume of liquid relative to vessel
Vi=Vs =V(y.—7¥s)A0

AV = VY8 (Y =71
of volume expansion for liquid)

—¥s = Apparent coefficient

Y. >|Vup >|AV,y, = positive| Level of liquid in vessel will
Ys 0 rise on heating.

¥ T Ve S| AV =|Level of liquid in vessel will
<ys |0 negative fall on heating.

Vi =|Vap=0|AV,, =0 Level of liquid in vessel will
Vs remain same.

A 1-L flask contains some mercury

It is found that at different'temperatures, theé volume. of’

air inside the flask remains the same. What is the velume
of mercury in the flask, given that the coefficient of linear
expansion of glass = 9 x 10 /°C and the coefﬁclent of
volume expansion of Hg=1.8 x 10 /°C? *

Sol. Since the volume above mercury remains the same at all
temperatures, the expansion of the glass. vessel must be the
same as that of mercury in the vessel. Also, y, =3 a, =27 %
10%/°C. Let ¥ be the volume of the'mercury. Then, from A V/
=Wy AT

Vx (1.8 % 107) x AT=1073 %27 x 10 AT

(--1L=10"m’andy =3a) or V=150x10°m’

{u { _ A hollow aluminium cylinder 20.0
cm decp has an internal capacity of 2.000 L at 20.0°C. It is
completely filled with turpentine and then slowly warmed
to 80.0°C. a. How much turpentine overflows? b. If the
cylinder is then cooled back to 20.0°C, how far below the
cylinder’s rim does the turpentine’s surface recede?

Sol. We guess that vertical cubic centimetres of turpentine
will overflow, and that the liquid level will drop about a
centimetre.

We will use the definition of the volume expansion coef-
ficient. Both the liquid and the container expand. We will need
to reason carefully about original, intermediate and final vol-
umes of each.

When the temperature is increased from 20.0°C to 80.0°C, both
the cylinder and the turpentine increase in volume by AV=yV AT:

AV,
_(?VAT)M = "‘:AT(?:W

a. The overflow is Vi = AV —
Vaver = (YVAT )iy
V.= (2.000 L) (60.0°C) (9.00 x 107°C — 0.720 x 10°C)

—3am)

=0.0994L

b. After warming, the whole volume of the turpentine is

V' =2000 cm® + (9.00% 107 PC)(2000 cm’¥(60.0°C) = 2108 cm’

m: 471X 10*2
2108 J

The fraction lost is

This also is the fraction of the cylinder that will be empty
after cooling. Therefare, change in level

Ah = (4,71%107°)(20.0cm) = 0.943 cm

The change in‘volume of the container is not negligible, but is
8% of the chaqgc involume of the turpentine.

A glass flask whose volume is exactly
100 l:m’ t 0°C is filled level full of mercury at this tem-
perature. When the flask and mercury are heated to 100°C,
15.2 cm’ of mercury overflows, The coefficient of cubical
expansion of Hg is 1.82 x 10Y/°C. Compute the coefficient
of linear expansion of glass.

Sol. As 15.2 cm? of Hg overflows at 100°C,

(final volume of Hg) — (final volume of glass flask) = 15.2 cm’,

= 1000(1+7i8)—1000(1+7,0) =152,

where @ =rise in temperature = 100 — 0= 100°C
=Y. =Yi— 9.2 =0.000182-0.000152
LA T e R

>y, =3X107°FC »a="2=1x107PC.
3

A 250 cm’® glass bottle is completely

ﬁlled wnth water at 50°C. The bottle and water are heated
to 60°C. How much water runs over if:

a. the expansion of the bottle is neglected;

b. the expansion of the bottle is included? Given the
coefficient of areal expansion of glass = 1.2 x 10°/K
and ¥, = 60 X 10 %/°C.

Sol. Water overflow = (final volume of water) — (final volume
of bottle)



a, |f the expansion of botile 1s neglected:

Water overflow =250(1+7,8)-
=250x60x107 %10
= water overflow = 1.5 cm?

b. If the bottle (glass) expands:
Water overflow

= (final volume of water) — (final volume of glass)
=250(1+7,6)-250(1+7,0)

=250(y,—7,)0, where y, =3/28=18x10"FC
=250(58.2x10™*) x (60— 50)

Water overflow = 1.455 cm?®

Effect of Temperature on Upthrust

The thrust on volume ¥ of a body in a hquld of density o is

given by Th=Vog

Now with rise in temperature by A8 °C, due to expansion,
volume of the body will increase while density of liquid will
decrease according to the relations V' =V (1+ysA0)] and
o'=0/(1+y.A0)

So the thrust will become Th'=V'c'g
TH _V'o'g _(1+ysA8)
Th Vog (1+7.48)

and apparent weight of the body W, = actual weight — thrust
As ¥s<¥., therefore, Th'<Th with rise in temperature

thrust also decreases and apparent weight of body increases.

=il % Asolid floats in a liquid at 20°Cwith
75% of it |mmersed When the liquid is heated to 100°C,

the same solid floats with 80% of it immersed in the liquid.

Calculate the coefficient of expansion of the liguid. Assume
the volume of the solid to be constant. .

Sol. Let m be the mass of the solid and Wits volume. By the
law of flotation

Weight of floating object = Bﬁoyanf-fani’é'

InCase l: mg= (%V)Pzné’

where 1y = density of liquid at 20°C

80
In Case II: mg= (TV ]Pumg

where oo = density of liquid at 100°C
Considering both the cases

% 4 3 Po _4 Po

— = — = — = —
4PP TP By x20 5147 %100

After solving we get

y =—=847x107FC
1180

‘Sol. Let =1,
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A sinker of weight }¥, has an apparent

we1ght W when placed in a liquid at a temperature T, and
W, when weighed in the same liquid at a temperature T, The
coefficient of cubical expansion of the material of the sinker
is y.. What is the coefficient of volume expansion of the
liquid? ’

—T, and y = coefficient of volume expansion
of liquid.

Let density of liquid at temperatures T, and 7, be p, and p,,
respectively.

= p, = p;(1+70) 0]
Let ¥, and ¥, be the volumes of the sinker at temperatures T
and T, respectively.

| =V, =V, (1+7.6) (if)
The loss inweightat T, = Vip, gt Wo= W, =Vipig  (iii)
The loss in weight at 75 =ng2g' P W, -W=Vapg (V)
W _Vip,
Dividing Egq. (iii) by Eq. (iw),,————
gq)yq()WWszp2
W, —W 1+y6
Using Eqs. (@) and (ii), *W—W' ﬁ
: e ~
ﬁ1+y6—w Ly, W= Wilg
W Ws Wg -Wz

oo (W W) T (=W
"“\wo-w)T-1 " W -w )"
Anomalous Expansion of Water

. Generally matter expands on heating and contracts on
cooling. In case of water, it expands on heating if its
temperature is greater than 4°C. In the range 0°C to 4°C,
water contracts on heating and expands on cooling, i.e., ¥
is negative. This behaviour of water in the range from 0°C
to 4°C is called anomalous expansion.

2. The anomalous behaviour of water arises due to the fact
that water has three types of molecules, viz., H,O, (H,0),
and (H,0),, having different volume per unit mass values
and at different temperatures their properties in water are
different.

3. At 4°C, density of water is maximum whlle its specific
volume is minimum.

During winter when the water on the surface of a lake cools
below 4°C by cold air, it expands and becomes lighter than
water below. Therefore, the water cooled below 4°C stays on
the surface and freezes when the temperature of surroundings
falls below 0°C. Thus the lake freezes first on the surface and
water in contact with ice has temperature 0°C while at the
bottom of the lake 4°C (as density of water at 4°C is maximum)
and fish and other aquatic animals remain alive in this
water.
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Expansion of Gases

Gases have no definite shape; therefore, gases have only
volume expansion. Since the expansion of container is
negligible in comparison to the gases, gases have only real
expansion.

Coefficient of Yolume Expansion

At constant pressure, increase in volume per unit volume per
unit degree rise of temperature is called coefficient of volume
expansion.

x — .. Final volume V'= V(1 +@AT)

_av 1
T v AT

Coefficient of Pressure Expansion

AP 1
= — e —
P Al

Final pressure P'= P(1+,8AT)

For an ideal gas, coefficientof volume expansion is equal to
the coefficient of pressure expansion.

ie. a=p :%PC

Application of Thermal Expansion

1. Bi-metallic strip: Two strips of equal lengths but of
different materials (different coefficient of linear expansion)
when join together, is called ‘bi-metallic strip’ and can be
used in thermostat to break or make electrical contact. This
strip has the characteristic property of bending on heating
due to unequal linear expansion of the two metals. The strip
will bend with metal of greater & on outer side, i.e., convex
side.

Steel_,_‘_!;- _- Brass
!

]

“@

. Room temperatare Higher -

Fig. 1.14

High temperature Room tempersture

Fig. 1.15

Rilltieiilomeerd A copper and a tungsten plate
having a thickness 6 = 2 mm each are riveted together
so that at 0°C they form a flat bimetallic plate. Find the
average radius of curvature of this plate at ¢ = 200°C. The
coefficients of lineax@éxpansion for copper and tungsten are
a,,= 1.7 x 10-/Kand ;= 0.4 x 10-°/K, respectively.

Sol. The average length of copper plate at a temperature
T'=200°Cis e =lp(1+acT),

where /, is'the length of copper plate at 0°C. The length of the
tungsten plateis [, =, (1+a,T)

Copper

Fig. 1.16

We shall assume that the edges of plates are not displaced
during deformation and that an increase in the plate thickness
due to heating can be neglected.

From Fig. 1.16 we have

lc=0(R+6/2) = l,=¢{R-—512)

Consequently,

P(R+8/2)=l(1+ecT) (1)
¢(R-6/12)=L,(l+e,T) (ii)
To eliminate the unknown quantities, ¢ and /,, we divide Eq. (i)
by Eq. (ii) term-wise:
[2+(a ,+a,)T]
[2(er. —,)T]

(R+6/2) (1+acT)
(R-6/2) (1+e,T)

= R=

é

= R=——7—
(ac_ar)T



neglecting (@c +¢.) in numerator. Substituting the values in
above relation. we get: R =0.769 m.

2. Effect of temperature on the time period of a simple
pendulum: A pendulum clock keeps proper time at
temperature @, If temperature is increased to 6 ' (> 60 ) then
due to linear expansion, length of pendulum and hence its
tirme period will increase.

If 7, be the length of the pendulum, at #°C, then its time
period

o
g

At any temperature increment A8, the time period of the
pendulum is given by

T=211'JZ
&

Ty=2m ®

Here, [=1I(1+aA6)
T=2r [RU+0A8) o0 b1 oag)”
& 8
=T, (1 +aA8) (i)
oA@ T al\f

= s il ) —_———
TC{H = ) r T 3
T-T, _oAg AT _aA®
T 2 T2

M:(“ﬂ)n
2
Note:

«- Due to increment in its time period, a pendulun clock
- becomes slow in summer and will I_ésé_tﬁm‘é. e
« Loss of time in a time period AT'= %@mnn
. Loss of time in any given time interval t can be given
by '
a=10
2

e The clock will lose time, ie., it will become slow if
8'> 0 (in summer).

o It will gain time, i.e., it will become Sfast ;f 8'< 8
(irnt winter).

e The gain or loss in fime is independent of time period
T and depends on the time interval t.
Time lost by the clock in a day (t = 86400 5)

At= % aAm=%aM (86400) = 43200 aAx s
» Since céeﬁiciem of linear expansion (c) is very small

Jor invar, pendulums are made of invar to show the
correct time in all seasons.
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3 i 18 A clock with a brass pendulum shaft
keeps correct tlme at a certain temperature.

a. How closely must the temperature be controlled if the
clock is not to gain or lose more than 1 s a day? Does the
answer depend on the period of the pendulum?

b. Will an increase of temperature cause the clock to gain
or lose? (., =2 x 107°/°C)

Sol.

a. Number of seconds lost or gained per day = %a& x 86400,

where @ = rise or drop in temperature; « = coeff. of linear

expansion of shaft.

We want that %a8x86400 <1
=0l —— 2 £ |9141.1574°C
2x107 x864005 j

Hence temperature should not increase or decrease by
more than 1.1574°C. Tt dogs not depend upon time period.

b. An increase in‘temperature makes the pendulum slow and
hence clock loses time.

- %15 A pendulum clock loses 12 s a day if
the temperatlu'e is 40°C and goes fast by 4 s a day if the
temperature is 20°C. Find the temperature at which the
clock will show correct time and the coefficient of linear
expansion of the metal of the pendulum shaft.

Sel. Let T"be the temperature at which the clock is correct.
Time lost per day = 1/2 & (rise in temperature) * 86400

=12=1/20(40—T) = 86400 (i)
Time gained per day = 1/2 ¢ (drop in temperature) x 86400
=4 =1/20(T -20)x 86400 (i1)
Adding Egs. (i) and (ii), we get

32 =86400c(40-20) = =1.85x107/°C

Dividing Eq. (i) by Eq. (ii), we get
1T -20)=4(40-T7) =T=25°C
= Clock shows correct time at 25°C

3. Thermal stress in a rigidly fixed rod: When a rod
whose ends are rigidly fixed such as to prevent expansion
or contraction, undergoes a change in temperature, a
compressive or tensile stress is developed in it. Due to
this thermal stress the rod will exert a large force on the
supports.
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If temperature of rod is increased by AT, then change in length
Al=lo AT

strain = % =oAT

But due to rigid support, there is no strain. Supports provide
force or stresses to keep the length of rod same

. stress

strain

thermal stress = Y strain= Ya AT

£= YeAT F=AYa AT

BN e GG e A rod of length 2 m is at a tem-
perature of 20°C. Find the free expansion of the rod, if the
temperature is increased to 50°C, then find stress produced
when the rod is (i) fully prevented to expand, (ii) permitted
to expand by 0.4 mm. ¥=2 x 10" N/m? a =15 x 109/°C.
Sol. Free expansion of the rod = a LAG
=15x 10%°C x 2 m x (50 — 20)°C
=9%10"m=0,9 mm
i. If the expansion is fully prevented,

9x10~

then strain = =4.5%x107

. Temperature stress = strain x ¥
=4.5x104x2 x 10" =9 x 10’ N/m?

ii. If 0.4 mm expansion is allowed, then length restricted to
expand = 0.9 — 0.4 =0.5 mm

5x107

. Strain = =25x10™
.. Temperature stress = strain x ¥ =2.5 x 10.* x 2 x 10"
=5 x 10"N/m?

Bl IS U RILPE Two rods of different metals having
the same area of cross section 4 are placed between the
two massive walls as shown in Fig. 1.18. The first rod has
a length /,, coefficient of linear expansion ¢, and Young’s
modulus ¥,. The corresponding quantities for second rod
are L, a, and ¥,. The temperature of both the rods is now
raised by °C.

N Z
S II [ 1 [2 o ;
3T L L gt "
NN NN
1/ // NN
RIITHIITTIITIIIN AL Z
S A
X .

Fig. 1.18

i. Find the force with which the rods act on each other (at
higher temperature) in terms of given quantities.
ii. Also find the length of the rods at higher temperature.

Sol.

i. Let/°C = increase in the temperature.
Increase in lené;th of first rod = Lot
Increase in length of second rod = L f
. Total extension in length due to rise in temperature

=l t+ Loyt = (ha + haeo)t (1)

Since the walls are rigid, this increase in length will not
happen. This will be compensated by equal and opposite
forces F, F producing decrease in the lengths of the rods
due to elasticity.

- Decrease in length of first rod =m
FixA
And decrease in lengthiofsecond rod = ki
i Yz X A

.. Total decrease inlengthidue to clastic force

S, ;
'A(ﬂ+n) )

From/Egs. (i) and (ii), we have

I 3
E(—'+!—'] = (Lot + 1,0t )t
A\Y, ¥

o N Ao, +bo, )t
[1, 11]
-_+_—
Y r

ii. Length of the first rod = original length + increase in length
due to temperature — decrease in length due to force

(ii)

= (!‘| +llagf_£!_l]
AY

Fl
and length of second rod = L +hLayt — 1 }3'

e

.. The total length is same = /, + 1, at all temperatures.

TNt EE  Two rods of equal cross sections,
one of copper and the other of steel, are joined to form a
composite rod of length 2.0 m at 20°C; the length of the
copper rod is 0.5 m. When the temperature is raised to
120°C, the length of compesite rod increases to 2.002 m.
If the composite rod is fixed between two rigid walls and
thus not allowed to expand, it is found that the lengths of
the component rods also do not change with increase in
temperature. Calculate Young’s modulus of steel. (The
coefficient of linear expansion of copper,a,=1.6 x107/°C
and Young's modulus of copper is 1.3 x 10" N/m?)



Sol. Change in length:
For Curod

La[t—1]=05%a, x(120-20) = 50a,

For steel rod
La(t; — 1) = 1.5a, 100 = 150a,
. Total change in length =50, + 150, = 0.002 m

_ 4x 107 -0,  4x107-1.6x107
k) 3 3
Stress in steel rod, f, = Y, x strain = Y, x Al//

=0.8 x 10%5/°C

=Ya(n,—1)=Y,xa,x100=100 Ya,

There is no change in the length of individual rod, because the
length change due to stress is balanced by length change due
to thermal expansion,

Similarly, stress in copper rod, f. =

Ya,x100=100Y.c,

Now stress is same in both:

Yo, 1.3x107x1.6x107

e e — =26 [0 N?

¥

4. Error in scale reading due to expansion or contraction: If
a scale gives correct reading at temperature 6, at temperature
8'(> 6 ) due to linear expansion of scale, the scale will expand
and scale reading will be lesser than true value so that

0 i ] SR U] a SR i
i l....| Tiaa {I il ol ]
! | i
SEPEP ] [
e N - ne<é i
1V =5R Y >5R TV < AR
Fig. 1.19

True value = scale reading [1+ai(@' =8)]

ic., TV = SR[1+0A8] wighlAe = (8:%0)

However, if 8'<6, due to contractions of scale, scale
reading will be more than true value, so true value will be
lesser than scale reading and will still be given by same
equation with A@ = (8'-8) being negative.

ata temperature of20°C The distance between two points,
as measured by this tape on a day when the temperature is
35°C, is 26 m. What is the true distance between the point?
(asn:cl 1 2 X IO_VOC)

Sol. Let temperature rise above the correct temperature by 6.

=68=35-20=15°C

A = Asurveyor’s 30 m steel tape is correct

Using the relation:
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Correct length = measured length (1+a6)=> true distance
between the points

=26(1+1.2x10°x15) = true distance = 26.00468 m

Hh ] <% A barometer with a brass scale reads
755 mm on a day when the temperature is 25°C. If the scale

is correctly graduated at 0°C, find the true pressure at 0°C
(in terms of height of Hg) given that the coefficient of linear
expansion of brass is 18 x 10/K. Coefficient of cubical
expansion of mercury = 182 x 10 %K.

Sol. Given that ] mm at0°C =1 mm

o755 mmat 25°C=755(1 + 18 % 10°¢ x 25) mm = 755.34 mm

Let P be the value of the atmospheric pressure.
Then P = 755.34 p,g = hp g, wher€ py, p ,; are densities of
mercury at 0°C and 25°C, respectiyely;

or h=75534xP2 — 45534 x> Po
0o 100 (1+182x107 x 25)
or #=751.19 mm

Fati ‘Atroom temperature (25°C) the length
of a stce,l rud s measured using a brass centimetre scale.
The m;.asured Tength is 20 cm. If the scale is calibrated to
read accnrafely at temperature 0°C, find the actual length
of steel l:od at room temperature

‘Sol. The brass scale is calibrated to read accurately at 0°C.

This means at 0°C. each division of scale has exact 1 cm length.
Thus at higher temperature the division length of scale will

be more than | cm due to thermal expansion. Thus at higher

temperature the scale reading for length measurement is not
appropriate and as at higher temperature the division length is
more, the length this scale reads will be lesser than the actual
length to be measured. For illustration in this case the lcngth of
each division on brass scale at 25°C is

heiv = (lem)[1+ @, (25-0)]
=1 +a,, (25)

It is given that at 25°C the length of steel rod measured is
20 cm. Actually it is not 20 cm, it is 20 divisions on the brass
scale. Now we can find the actual length of the steel rod at
25°C as

Lwe = (20cm) X b,

or by = 20[1 + &, (25)] (i)

The above expression is a general relation using which you

can find the actual lengths of the objects of which lengths are

measured by a metallic scale at some temperature other than

the graduation temperature of the scale.

5. Expansion of cavity: Thermal expansion of an isotropic
object may be imagined as a photographic enlargement.
So if there is a hole 4 in a plate C (or cavity 4 inside a body
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(), the area of hole (or volume of cavity) will increase when
body expands on heating, just as if the hole (or cavity) were
solid B of the same material. Also the expansion of area (or
volume) of the body C will be independent of shape and
size of hole (or cavity), i.e., will be equal to that of D.

‘{ .C "I By

—bh—> —b—s

:_ Expansion of A = Expansion of B Expansion of C = Expansion of D

Fig. 1.20

Note: For a solid and hollow sphere of same radius and
mcterwt, heated to the same temperature, expansion of
bat‘h will be equal because thermal expansion of isotro-
pic_ solids is similar to true photographic enlargement. It
means the expansion of cavity is same as if it has been a
solid body of the same material. But if same heat is given
fo the two spheres, due to lesser mass, rise in remperatm

of i hoilow sphere will be more {As (AH & )} Hence
c )
its expanswu will be more. '

6. Practical application:

i. When rails are laid down on the ground, space is left
between the ends of two rails to allow for expansion.

jii. The transmission cables are not tightly fixed to the poles.

jii. Pendulum of wall clock and balance wheel of wrist watch
are made of invar (an alloy which has very low“\fa{u}s.cf?
coefficient of expansion).

iv. Test tubes, beakers and crucibles are made of pyrex-glass
or silica because they have very low value ofcoefficient of
linear expansion.

v. The iron rim to be put on a cart wheel i is aiways of slightly
smaller diameter than that, of wheel to ensure tight fit.

vi. A glass stopper Jammedm the neck ofa glass bottle can be
taken out by warming the neck ofthe bottle.

1. Does the change in volume of a body when its
temperature is raised depend on whether the body has
cavities inside, other things being equal?

2. Explain why some rubber-like substances contract with
rising temperature.

3. Two large holes are cut in a metal sheet. If this is heated,
will their diameters increase or decrease?

4, In the above question, will the distance between the
holes increase or decrease on heating?

10.

12.

13.

14.

15.

A long metal rod is bent to form a ring with a small gap.
If this is heated, will this gap increase or decrease?
Two iron spheres of the same diameter are heated to the
same temperature. One is solid, and the other is hollow.
Which will expand more?

A steel tod is 3.000 cm at 25°C. A brass ring has an
interior diameter of 2.992 cm at 25°C. At what common
temperature will the ring just slide on to the rod?

A clock with a metallic pendulum gains 5 s each day
at a temperature of 15°C and loses 10 s each day at a
temperature o 30°C. find the coefficient of thermal
expansion of the pendulum metal.

The design of some physical instrument requires
that there be a constant difference in length of 10 cm
between an iron rod and a copper.cylinder laid side by
side at all temperatures. Find their lengths.

(p=1] %1088C ",
aé =17 X 16:5°C)

A metal rod of 30 em length expands by 0.075 cm when
its temperature is raised from 0°C to 100°C. Another rod
of a different metal of length 45 cm expands by 0.045
cm forthe same rise in temperature. A composite rod C
magde by joining A and B end to end expands by 0.040
ofn when its length is 45 cm and it is heated from 0°C to
50%C. Find the length of each portion of the composite
A brass scale is graduated at 10°C. What is the true
length of a zinc rod which measures 60.00 ¢cm on this
scale at 30°C?

Coefficient of linear expansion of brass = 18 x 10 K-\,

A long horizontal glass capillary tube open at both ends
contains a mercury thread 1 m long at 0°C. Find the length
of the mercury thread, as read on this scale, at 100°C.

A mercury-in-glass thermometer has a stem of internal
diameter 0.06 cm and contains 43 g of mercury. The
mercury thread expands by 10 cm when the temperature
changes from 0°C to 50°C. Find the coefficient of
cubical expansion of mercury. Relative density of
mercury = 13.6 and @ ., = 9 x 10°/K.

A sphere of diameter 7 cm and mass 266.5 g floats
in a bath of liquid. The temperature is raised, and the
sphere begins to sink at 35°C. If the density of the
liquid is 1.527 at 0°C, find the coefficient of cubical
expansion of the liquid. Neglect the expansion of the
sphere.

A mercury thermometer is to be made with glass tubing
of internal bore 0.5 mm diameter and the distance
between the fixed point is to be 20 em. Estimate the
volume of the bulb below the lower fixed point, given
that the coefficient of cubical expansion of mercury is
0.00018/K and the coefficient of linear expansion of
glass is 0.000009/K.




16.On a Celsius thermometer the distance between the
readings 0°C and 100°C is 30 cm and the area of cross
section of the narrow tube containing mercury is 15
x 10 cm®. Find the total volume of mercury in the
thermometer at 0°C. « of glass = 9 x 10-%/K and the
coefficient of real expansion of mercury = 18 x 10-%/K,

17. The height of a mercury column measured with a brass
scale, which is correct and equal to H, at 0°C, is H, at
t°C? The coefficient of linear expansion of brass is a
and the coefficient of volume expansion of mercury is
y. Relate H, and H,.

18. A glass bulb contains air and mercury. What fraction of
the bulb must be occupied by mercury if the volume of
air in the bulb is to remain constant at all temperatures?
The coefficient of linear expansion of glass is
9 x 109K and the coefficient of expansion of mercury
is 1.8 x 10-%/K.

19. Whencompositerod is free, composite length increases to
2.002 m when temperature increases from 20°C to 120°C.
When composite rod is fixed between the support, there
is no change in component length, Findy and & of steel if
Yeu=15%10%N/m*a_ = 1.6 x 10%/°C.

Copper

s
f‘—OSm—vg
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Steel
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Conduction takes
place in solids

Convection. takes
place in fluids

Radiation takes
place in gaseous
and transparent
media

The temperature
of the medium
increases through

In this process also
the temperature of
medium increases

There is no change
in the temperature
of the medium

TRANSMISSION OF HEAT

Heat energy transfers from a body at higher temperature
to a body at lower temperature. The transfer.of heat from
one body to another may take place by any of the following

modes.

Conduction

Convection

Radiation

Heat flows from
hot end to cold
end. Particles of
the medium simply
oscillate but do not
leave their place

Each particle
absorbing heat'is
mobile

Heat flows without
any intervening
medium in the form
of electromagnetic
waves

Medium is neces-
sary for conduction

Medium 1s
necessary for
convection

Medium is not nec-
essary for radiation

It is a slow
process

It is also a slow
process

It is a very fast
process

Path of heat flow
may be zig-zag

Path may be zig-
zag or curved

Path is a straight
line

which heat flows

Conduction

The process of transmission of heat energy in which the heat is
transferred from one particle to other without dislocation of the
particles from their equilibrium position is called conduction.

i. Conduction is. a process which isipossible in all states of
matter. '

ii. In solids only conduction takes place.

iii. In non-metallic solids/and fluids the conduction takes place
only due to vibrations of molecules; therefore, they are
poor conductors. %

iv. In metallic solids.free electrons carry the heat energy;
therefore, they are good conductors of heat.

1. Variable and steady state: When one end of a metallic
rod is heatsd, heat flows by conduction from the hot end to
the cold end. In the process of conduction each cross section
of the rod receives heat from the adjacent cross section

towards the hot end. A part of this heat is absorbed by the

cross section itself whose temperature increases, another part

is lost into atmosphere by convection and radiation and the

rest is conducted away to the next cross section.

Because in this state temperature of every cross section of the
rod goes on increasing; hence, rod is said to exist in variable state,

b

Temperature

Distance from hotter end

Fig. 1.22

Hot end Cold end

\
Metallic rod

Fig. 1.23

After some time, a state is reached when the temperature of every
cross section of the rod becomes constant. In this state, no heat
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is absorbed by the rod. The heat that reaches any cross section is
transmuitted to the next except that a small part of heat is lost to
surroumding from the sides by convection and radiation. This state
of the rod in which no part of rod absorbs heat is called steady
state.

2. Isothermal surface: Any surface (within a conductor)
having its all points at the same temperature is called
isothermal surface. The direction of flow of heat through
a conductor at any point is perpendicular to the isothermal
surface passing through that point.

i. If the material is rectangular or cylindrical rod, the
isothermal surface is a plane surface.

ii. If a point source of heat is situated at the centre of a sphere
the isothermal surface will be spherical.

iii. If steam passes along the axis of the hollow cylinder, heat

will flow through the walls of the cylinder so that in this

condition the isothermal surface will be cylindrical.

o FEL
: y‘?"‘; 3
ok|om:|o| e L L3 ds
N 1 N P S \*pX ]
K 7 = x“h"t"'/&

Plane isothermal surfaces Spherical isothermal surface

Cylindrical isothermal surface

Fig. 1.24

3. Temperature gradient: The rate of change of tcmpez:amre:

with distance between two isothermal surfaces is called
temperature gradient.

If the temperature of two isothermal surfaces bel 6 and
(8 —A8) and the perpendicular distance between-them be

. - _(6-A8)=8" 4 -A6
Ax, then t ture gradient = ———— = ——
n tempera gradi . "N =
7/ (92n6)
o
«— Ax —
Fig. 1.25

The negative sign shows that temperature & decreases as the
distance x increases in the direction of heat flow.
Unit: K/m (SI); dimension: [L™' 8]

4., Coefficient of thermal conductivity: If L be the
length of the rod, 4 the area of cross section and €, and
f, be the temperatures of its two faces, then the amount
of heat flowing from one face to the other face in time ¢
is

QxA
x (6,— 6,)
ot
-}

0« A6, l‘192);

In combined form

or o= KAGER)

—

Fig. 1.26

where K is coefficient of thermal eondugtivity of material of
rod. It is the measure of the ability‘ofa substance to conduct
heat through it.

This relation can also he expr’essed as

29 U6, ~a)
IfA = 'm0, -—6',}—1"C t=1sand/=1m, then
0=K.

Thus, thcmnal conductivity of a material is the amount of
heat flowing per second during steady state through its rod
of length | m and cross section 1 m? with a unit temperature

_difference between the opposite faces.

i. Units: cal/em-s°C (in CGS), kcal/m-s-K (in MKS) and
W/m-K (in SI)
ii. Dimension: [MLT™67"]
iii. The magnitude of K depends only on nature of the material.
iv. For perfect conductors, K = <= and for perfect insulators,

K=0

v. Substances in which heat flows quickly and easily are
known as good conductors of heat. They possess large
thermal conductivity due to large number of free electrons.
Example: silver, brass, etc.

vi. Substances which do not permit easy flow of heat are called
bad conductors. They possess low thermal conductivity
due to very few free electrons. Example: glass, wood, etc

vii. The thermal conductivity of pure metals decreases with
rise in temperature but for alloys thermal conductivity
increases with increase of temperature.

viii. Human body is a bad conductor of heat (but it is a good
conductor of electricity).

A refrigerator door is 150 cm high,
80 cm wule, and 6 cm thick. If the coefficient of conductivity
is 0.0005 cal/cm s°C, and the inner and outer surfaces are
at 0°C and 30°C, respectively, what is the heat loss per
minute through the door, in calories?



Sol. Apply the equation of thermal conductivity

Q=

KA(t, —1.)(time) _0.005(150 x 80)(30°—0°)(60)
d - 4
= 1800 cal

An ordinary refrigerator is thermally

equwalent toa box of corkboard 90 mm thick and 5.6 m’
in inner surface area. When the door is closed, the inside
wall is Kept, on the average, 22.2°C below the temperature
of the outside wall. If the motor of the refrigerator runs
15% of the time while the door is closed, at what rate must
heat be taken from the interior while the motor is running?
The thermal conductivity of corkboard is % =0.05 W/mK.

Sol. Consider a time interval Ar during which the door
is closed. As approximation, take the heat conduction to be
steady over Af.

Then the rate of heat into the box is

AQ

¥ _m(m) (005)(56)( 2392) 69.1W

Toremove this heat, the motor must, since it runs only fora time
(0.15) At, cause heat to leave at the rate 69.1/0.15 =460 W,

FEDIET Water is being boiled in flat bottom
kettle placed ona stOve The area of the bottom is 3000 cny’
and the thickness is 2 mm. If the amount of steam produced is
1 g/min, calculate the difference of temperature between the
inner and outer surface of the bottom. K for the material of
kettle is 0.5 cal/°C/s/cm, and the latent heat of steam is 540
cal/g. .

e I
Sol. Mass of st =—=—
So ass of steam produced & 60
Heat transferred per second
dH dm aH 1 <%
=L— = =35 B =] =0 cal/ls
= i o 540 S cal/s="9 cal/s
Area = 3000 cm?; K = 0,5 cal/°C/s/cm
¢ = temperature difference
d = thickness =2 mm = 0.2 cm

dH _ KA@ - dm KA@
dt d df d
=0,5x3000x9 o 8=12x107"°C
0.2

B i‘n‘ﬁ A closed cubical box made of perfectly

msulatmg material has walls of thickness 8 cm and the only
way for the heat to enter or leave the box is through the
solid, cylindrical, metallic plugs each of cross-sectional area
12 em’ and length 8 cm fixed in the opposite walls of the
box as shown in Fig. 1.27. The outer surface 4 is kept at
100°C while the outer surface B of other plug is kept at 4°C.
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K of the material of the plugs is 0.5 cal/s/C/cm. A source of
energy generating 36 cal/s is enclosed inside the box. Find
the equilibrium temperature of the inner surface of the box
assuming that it is same at all points on the inner surface.
Sol. Let @ be the temperature of inner surface of box.

Heat transfer per second through 4 + heat produced by
source per second = Heat transfer per second through B

= [ﬂ) +36 calfs=(f£]
dar /, dr ),

A d . *] BL.
loo°cl | (" | J4°c
Source’
Fig, 1.27
i KA(lgo-Q)+__3_.6 _ KA(z -4)

—KA(6 —4-100+0)=36xd
Now, d =8em, A= 12 cm?, K = 0.5 cal/s/°Clcm.

36x8
2x0.5

=%="T76%C

:::»26—!04:]

it.e are arranged as shown in Fig. 1.28. The extreme
ends of the combination are maintained at the identical
temperatures. The arrangement is thermally insulated.
The coefficients of thermal conductivity of 4 and B are 300
W/m°C and 200 W/m°®C, respectively. After steady state is
reached, what will be the temperature T of the interface?

(IIT-JEE-1996)

3‘3‘3& Two metal cubes 4 and B of same

ol el

¥
woec| A | 8| oc
fo— i —+fo—  —]

Fig. 1.28

Sol. In steady state, rate of flow of heat through 4 = Rate of
flow of heat through B.

100—r):K1A(T—0)

X

or 300 —3T=2T

or K]A(

x
T=060°C

5. Relation between temperature gradient and thermal

conductivity: In steady state, rate of flow of heat
dQ d6

—=—KA— = —KA (te ient

e e (temperature gradient)
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d0 . ; 1
1If -E; is constant then temperature gradient 2

Termperature difference between the hot end and the cold
end in steady state is inversely proportional to K, i.e., in case
of good conductors temperature of the cold end will be very
near to hot end.

In ideal conductor where K = oo, temperature difference in
steady state will be zero.

6. Thermometric conductivity or diffusivity: Itisameasure
of rate of change of temperature (with time) when the body is
not in steady state (i.c., in variable state).

The thermometric conductivity or diffusivity is defined
as the ratio of the coefficient of thermal conductivity to the
thermal capacity per unit volume of the material.

Thermal capacity per unit volume = %x pc (as P is

density of substance)

S _ K
Diffusivity (D) = be

Unit: m?s; dimension; [L’T"]

7. Thermal resistance: The thermal resistance of a body is a
measure of its opposition to the flow of heat through it.

It is defined as the ratio of temperature difference to the heat
current (= rate of flow of heat).

Now, temperature difference = (6; —6,) and heat current,

5. 2

t
.. Thermal resistance

R_8|“‘93_9|_93_ 9|“'9: _L
H 0/t KA(6,-6,)/1 KA
Unit: °C x s/cal or K x s/keal; dimension:
[M~L7T )

COMBINATION OF CONDUCTORS

1. Series combination: Let » slabs each of cross-sectional
area A, lengths /,3.55...., [, and conductivities K.K»,K,...,
K,, respectively, be connected in the series.

Heat current is the same in all the conductors.

f, é, 8, B, f._, 6,
A S N
e [t [;—>h— |~ Te—
Fig. 1.29
Le., Q=H1=H: =H,=H,
I

K,A(6,-6,) _ K,A(0.-6;) K,A(0-6.)
I 1, ly -

- KHA(BH—I _eﬂ)
ln

i. Equivalent resistance R=R, + R, + Ry ++-+ R,
ii. If K, is equivalent conductivity, then from relation

B L
KA
bthtbtetl, b b b b
K, KA KA KA K,A
_ !l+fo+f3+---+l
s 1
LI (O S R
kl K2 K3 Kn
iii. Equivalent thermal conductivity for slabs of equal length
= n
F o T !
— =
K] Kg K3 ﬁl_l
= 2K,\K
For two slabs of equallength, K = ——
equal length K +K,

iv. Temperature of interface of composite bar: Let the two
bars be arrsnged in series as shown in Fig. 1.30.
Then heat cu__r:e_nt is | sarr_le in the two conductors.

Ca g &,

e— 1, —>f— 1, —
Fig. 1.30

r 1, B L5

K,
§l9] 4 _!;62
3 P 2
By solving we get 8 = X ik . K,

R
K6, + K,0,
K +K,
2. Paraliel combination: Let # slabs each of length /, areas
Ay, Az, Ay, ..., A, and thermal conductivities K,K,,K,....K,
be connected in parallel. Then
S0 E g ; A ) (S i
i. Equivalent resistance R R R R TR
ii. Temperature gradient across each slab will be same.
iii. Heat current in each slab will be different. Net heat current
will be the sum of heat currents through individual slabs.
ie, H=H,+H,+H,+--+H,

K(A+A +A+-+4,)6-6,)
[
= KIAI (9| —9])_'_ KzAl (6| _92) + K3A3(91 _62)
l l [
+KJJA"(?1 _93)

If (l,=L=1) then 8 =




K

g K]A| " KzAz + K;A; +ck K,,.A“

A+A +A++A,

For n slabs of equal area K =

6<

Ki+K,+K;+-+K,

h

f—)‘g:

Fig. 1.31

Equivalent thermal conductivity for two slabs of equal area

K

_K|+K2

2

Electrical Analogy for i’hermal Conduction

It is an important fact to appreciate that there exists an exact
similarity between thermal and electrical conductivities of a

conductor.

Electrical conduction

Thermal conduction

Electric charge flows from
higher potential to lower
potential

Heat flows from higher tem
perature to lower temperature.

The rate of flow of charge is
called the electric current,

g

i.e.,
dt

The rate of flow o heat may
be called heat current

710
7S i

le.,

The relation between the
electric current and the po- _
tential difference is given by
Ohm’s law,

where R is the electrical re-
sistance of the conductor

Similarly, the heat current
| may berelated with the tem-
‘perature difference as
H = 8| e 9‘3
R
where R is the thermal resis-
tance of the conductor

The electrical resistance is
defined as
P
A oA’

where p = resistivity and
o = electrical conductivity

The thermal resistance may
be defined as

where K = Thermal conduc-
tivity of conductor
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% H:QE"_Bi

dr R dt R

]

Three cylindrical rods 4, B and C of

equal lengths and equal diameters are joined in series as
shown in Fig. 1.32. Their thermal conductivities are 2 K, K
and 0.5 K, respectively. In steady state, if the free ends of
rods A and C are at 100°C and 0°C, respectively, calculate
the temperature at the two junction points. Assume
negligible loss by radiation through the curved surface.
What will be the equivalent thermal conductivity?

100°C | A | B | C | 0°C
2K K 05K
Fig. 1,32

Sol. As the rods areqin '5-Ser_ie§, R.;=Ri+Rg+Re with

R=(L/KA)

N VA
2KA KA 05KA 2KA

" dQ A6 _ (100-0) _200KA
dr~ R (ILI2KA) L

1.e.,

(1)

And hence,. " H

Now inseries, rate of flow of heat remains same, i.ec.,
H’:HA..‘-_-_-"'HB:HC-

So forrod 4. [@] z[d—Q:|
dr 1, dr
v (100-8,z)2KA _ 200KA
S 5 e
or, B4 =100—(100/7) = (600/7)=87.7°C

And forrod C,

)=

By —0)x0.5KA _ 200KA

i.e.,

L Tids
or, 93(::(4001’?):5?10(:
Furthermore, if X, is equivalent thermal conducitivity,
L+l+L 1L ;
PRl [from Eq. (1)
Ree K.A 2KA %4
Le., K., =®6/TK

Two walls of thickness in the ratio
1 : 3 and thermal conductivities in the ratio 3 : 2 form a
composite wall of a building. If the free surfaces of the wall

-
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