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Preface

While the paper-setting pattern and assessment methodology have been revised many times over and newer criteria devised
to help develop more aspirant-friendly engineering entrance tests, the need to standardize the selection processes and their out-
comes at the national level has always been felt. A combined national-level engineering entrance examination has finally been
proposed by the Ministry of Human Resource Development, Government of India. The Joint Entrance Examination (JEE) to
India’s prestigious engineering institutions (IITs, IIITs, NITs, ISM, IISERs, and other engineering colleges) aims to serve as
a common national-level engineering entrance test, thereby eliminating the need for aspiring engineers to sit through multiple
entrance tests.

While the methodology and scope of an engineering entrance test are prone to change, there are two basic objectives that
any test needs to serve:

1. The objective to test an aspirant’s caliber, aptitude, and attitude for the engineering field and pﬁf@sgion.
2. The need to test an aspirant’s grasp and understanding of the concepts of the subjects of-.'s;'itidy--and their applicability
at the grassroot level.

Students appearing for various engineering entrance examinations cannot bank solely'en conventional shortcut measures
to crack the entrance examination. Conventional techniques alone are not enough as most of the questions asked in the ex-
amination are based on concepts rather than on just formulae. Hence, it is nccessa_ry-‘,f'pggudénts appearing for joint entrance
examination to not only gain a thorough knowledge and understanding of the coneepts but also develop problem-solving skills
to be able to relate their understanding of the subject to real-life applications based on these concepls.

This series of books is designed to help students to get an all-round grasp of the subject so as to be able to make its useful
application in all its contexts. It uses a right mix of fundamental principlés‘-:knd:'i:':onccpis, illustrations which highlight the ap-
plication of these concepts, and exercises for practice. The objective of each book in this series is to help students develop their
problem-solving skills/accuracy, the ability to reach the crux ofithe matter, and the speed to get answers in limited time. These
books feature all types of problems asked in the examina;iqnfﬁa-;i__l MCOs (one or more than one correct), assertion-reason
type, matching column type, comprehension type, or integer type questions. These problems have skillfully been set to help
students develop a sound problem-solving methodology.

Not discounting the need for skilled and’gifided practice, the material in the books has been enriched with a number of
fully solved concept application exercises so that every step in learning is ensured for the understanding and application of the
subject. This whole series of books adopts.a multi-facetted approach to mastering concepts by including a variety of exercises
asked in the examination. A mix of questions helps stimulate and strengthen multi-dimensional problem-solving skills in an
aspirant. '

It is imperative to note that thi&,ﬁhpok’;' would be as profound and useful as you want it to be. Therefore, in order to get maxi-
mum benefit from this badk, we recommend the following study plan for each chapter.

Step 1: Go through the entire 6pening discussion about the fundamentals and concepts.
Step 2: After learning the theory/concept, follow the illustrative examples to get an understanding of the theory/concept.

Overall the whole content of the book is an amalgamation of the theme of physics with ahead-of-time problems, which
equips the students with the knowledge of the field and paves a confident path for them to accomplish success in the JEE.
With best wishes!
B.M. Sharma
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1.2 Mechanics II

THE CENTRE OF MASS

In this section, we will discuss the overall motion of a system
of particles in terms of a very special point called the centre
of mass of the system. This notion gives us confidence in the
particle model because we will see that the centre of mass
accelerates as if all the system’s mass were concentrated at
that point and all external forces act there.

I

?ea
5w

(b)

Fig. 1.1

Consider a system consisting of a pair of particles
connected by a light rigid rod. The centre of mass as indicated
in Fig. 1.1 is located on the rod and is closer to the larger mass
in the figure. If a single force is applied at some point on the
rod above the centre of mass, the system rotates clockwise as
it translates through space [Fig. 1.1(a)]. If the force is'applied
at a point on the rod below the centre of madss, the system
rotates counterclockwise [Fig. 1.1(b)]. If the force is applied
exa_.f:tly at the centre of mass, the system moves in thedirection
of F without rotating [Fig. 1.1(c)] as if the system is behaving
as a particle. Therefore, in theorys the centre 6f mass can be
located with this experiment,

If we were to analyse the motion [Fig. 1.1(c)], we would
find that the system moves as if all ifs mass were concentrated
at the centre of mass. Furthermore, if the external net force on
the system is 2/ and the total mass of the system is M, the
centre of mass moves with an acceleration given by @ = SF/M.

Centre of Mass of a System of ‘N’ Discrete

Particles

Consider a system of N point masses m , m,, m, ..., m whose

1 3
. . L - -+ - -3
position vectors from origin O are given by r , 7., r,

-
veny 1o
"

respectively.

Then, the position vector of the centre of mass C of the
system is given by

Fig. 12

= _mrtmn e,
(s7]

m, +n_zi_..+ % -+ 1y

n Ry

= z,=| Wi 4
i
Z n

= =3 mr
M =1

where M (= Z;_, m,) is the total mass of the system.

Consider a system of point masses m ;» M, m,, ... located
at the coordinates (x,s ¥,5 2)s (x5 Y5 2,), ..., Tespectively. The
centre of mass of this system of masses is a point whose
coordinates are (xm, ol zcm), which are given by

_mx tmx, e _mytmy,t---

Fem e S Yem m tm, +

“+ PR
3 =mlzl m222+
cm m1+m2+--'

Y

o (X, ¥, 2)

« 11,055, Vaa 23)

B
»

X

Fig. 1.3
Four particles of masses 1 kg, 2 kg, 3

kg and 4 kg are placed at the four vertices A, B, C and D,
respectively, of a square of side 1 m. Find the position of
centre of mass of the particles.
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I w
Myl = - -__‘-m,
ODyn  m (1) « e e
Fig. 1.6
0,00 - px Then, mx=mx, )
" pm. (1,0) .
! and J*:i".*l(x1 d)y=m, (x,— d") (ii)
Fig. 1.4 & b g 5
B - Subtracting Eq. (ii) from Eq. (i), m d=m, d' or d = (m /m.) d.
Sol. Assuming D as the origin, DC as x-axis and DA as y-axis, *
we have A
m = 1kg (c.y)=(0,1m) Centre of Mass of a Continuous Mass
S A Distribution
m, =2 kg, (,, ) = (1 m, 1 m) :
#.=~ka, @ )=(1 m. 0) For a continuous mass distribution, the gentre of mass can be
3 iy ’ located by replacing summation sign'with an integral sign.
m, =4kg, (x,y,)=(0,0) Proper limits for the integral @re chosen according to the
situation.
Coordinates of their CM are calculated as follows. [ ; fy dm fz im
M, X X X, Mm M Tam T Jam
o mytmytmg my ' |dm =M (mass of the body)
5 wN
_ (1(0)+2(1) + 3(1) +4(0) _ _i - Eq )
1+2+3+4 N
Note: If an abject has symmetric uniform mass distribution about
X-QXiS;. :m y-coordinate of CM is zero and vice versa.
Centre of Mass of a Uniform Rod
Suppose a rod of mass M and length L is lying along the x-axis
with its one end at x = 0 and the other at x = L.
Mass per unit length of the rod = %
Fig.15 . ) Hence, the mass of the element dx situated at x = x is
my +my,+my £my, M
Similarly, y,, = ' :w +2;2+m?yim_'% dm =7~ dx
—> dye—
(1)(i)+2(1)+3(9)+4(0) _ B (U Pl IQ__,_U——---
4 O X 1™ &9 2
Fig. 1.7
=faa The coordinates of the element PQ are (x, 0, 0). Therefore,
. .y..)=(0.5m,0.3m) x-coordinate of CM of the rod will be
CM™ 7 CM ’ #

L
f:‘,xdm J-.rjiair 7
(| lie i Mes  Consider a two-particle system with the Xem™ [gm =2 £ =1L [xdx= L
particles havmg masses m, and m,. If the first particle is ’ M L 2
pushed towards the centre of mass through a distance 4, .
by what distance should the second particle be moved so The y-coordinate of CM is y .,
as to keep the centre of mass at the same position?

I ydm _

Similarly, =z, = 0.

Sol. Consider Fig. 1.6. Suppose the distance of m, from the
centre of mass C is x, and that of m from C is x,. Suppose
mass 7, is moved through a distance d’ towards C so as to

keep the centre of mass at C.

i.e., the coordinates of CM of the rod are (L/2, 0, 0), or it lies
at the centre of the rod. '



1.4 Mechanics II

The following points regarding centre of mass can be noted.

1. Centre of mass of a uniform rectangular, square or
circular plate lies at its geomeirical centre.

Fig. 1.8
2. For a lamina type (two-dimensional) body with uniform
negligible thickness, the formulae for finding the position
of centre of mass are as follows: ;
mF +mp +e-

11 2 2
Tm, +roe

F
™ mt

_ PAI AT +--
PAt+pAt+--

(m=pAr)

=‘4|r1 AP e
AFA,+
Here, A stands for area and r for density.

3. If some mass is removed from a rigid body, then the
position of centre of mass of the remaining portion is
obtained from the following formulae:

- - — -

@ 7 =mlrl-m2:20rr =f‘;r|_A_2’_z
cM m —m, ™ 4,-4,
mX —mx Ax —4

(¥}

ey Lo 2 =171
(l‘.l.) xCM _'?ﬁ;—_rﬁ“_ OerM 7| —d

[
-
ra

my, —my, Ay A v
(1) Yoy z_fﬂl——”’z: Gryc'm.fg%g

1 2

m
(V) 2oy, =—m,=m,~ OFZey =g =4,

ey

Here, m, A, r $ XD and z, are the values for the whole

[’

¥ P .
mass while my A, T, X, ¥, and z, are the values for the mass
which has been removed.

Note: We can imagine a rigid body as a system of masses
and hence every rigid body has a centre of mass. In case of a
regularly shaped uniform rigid body, centre of mass is simply
the geometric centre of the body. The centre of mass of some
continuous geometrical figures of uniform mass density is given in
Fig. 1.5,

— e N
Hollow cone

For half disc: g¢,= 1

==-Ym=%

Gircular lamina

2r

Circular arc

Fig. 1.9

T eIl RE  Find the centre of mass of a uniform
L-shaped lamina (a thin flat plate) with dimensions as
shown in Fig. 1.10. The mass of lamina is 3 kg.

g .

Fig. 1.10

Sol. The plate has uniform density and same thickness
everywhere. So its CM will coincide with the centroid.
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Divide the given plate into two parts of area 4 and 4, as
shown in the figure. We have

4= 2 x 1 m® with its centroid C, (1, 1/2)and
Ay =1 %1 m’ with its centroid C, (1/2, 3/2)
The centroid of the whole plate can be defined as

1
Ax +4x, 2x1+1x3 5

E="4 74~ 2+l 6©°
2 Fig. 1.12
Ay +Ay le+1xl Sol. MaSSOfthecut-outdjscis
y= ol e e 23 . M RV: M
474, 271 6 m= Y xn(3) =%

Let centre of the disc is at the origin of the coordinates.
Then we can write the CM of the'system as

7liniees Find the position of centre of mass of the
uniform lamina shown in Fig. 1.11.

T . M(-R\, M(R
A ; ' =MR—m?+m_’r:..Mx-0_4(2 +4(2)=§
I oM M—-m+m M_ﬂ_*f_,__M . 4
| 4%
J’m=0

MOTION OF THE CENTRE OF MASS

Motion of Centre of Mass and Conservation of

Fig 11§ Momentum: Velocity of Centre of Mass of System
Sol. Here, A, =area of complete circle =fra2 i - P &, at,
: 5 JTa R - e e —
A_ = area of small circle =;rr(-%)‘ ¥ T i dt Y@ " at " dr
2 M= W
(xl, ¥y= coordinates of centre of mass of the laige eircle =
=(0,0) _myvitm, vt - B
\ e Veyy =
(x, ,) = coordinates of centre of mass of the small circle my +m,+ - M
- (2,0) | o
2 Here numerator of the right-hand-side term is the total
_ momentum of the system, i.e., summation of momentum of
Using x. = (4 x=AE)(A =4 ), we get the individual components (particles) of the system.
i x(}—"z:—alxi Hence, velocity of centre of mass of the system is the
- 4 2_.2 ratio of momentum of the system per unit mass of the system.
mat— % . :
Acceleration of Centre of Mass of System
Yy = 0 (asy, and y, both are zero) . R i P
Therefore, coordinates of CM of the lamina shown in Fig. m 5'}’— iy d_;_g_”h ddi ek, %
G t C di C ot t
1.11 are (— a/6, 0). dey = M
- + — + -+ 4o —p
gl Figure 1.12 shows a uniform disc of - e r:;a! tma,
radius R, from which a hole of radius R/2 has been cut
out from left of the centre and is placed on the right of the r
_ Fou _ Net external force

centre of the disc. Find the CM of the resulting disc. =% M
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(Both the action and reaction of an internal force must be
within the system. Vector summation will cancel all internal
forces and hence net internal force on system is zero.)

e

-
=i Fa=Magy,

—
where Fm is the sum of the ‘external’ forces acting on the

systern. The internal forces which the particles exert on one
another play absolutely no role in the motion of the centre of
mass.

If no external force is acting on a system of particles, the
acceleration of centre of mass of the system will be zero. If
Aoy = 0, it implies that v must be a constant and if v is
a constant, it implies that the total momentum of the system
must remain constant. It leads to the principle that the total
momentum of the system must remain constant. It leads to
the principle of conservation of momentum in the absence of
external forces.

- —
If F =0,then P
ext Tofal

Ifno external force is acting on the system, net momentum
of the system must remain constant.

Centre of Mass at Rest

If F,, = 0 and v = 0, then centre of mass remains at rest.

Individual components of a system may move and have non-
zero momentum due to mutual forces (internal), but the net
momentum of the system remains zero.

I= constant.

Some examples:
» All the particles of the system are at rest.

» Particles are moving such that their mnet momentum
is zero. Example: Net momentum = 2m * 2% m(— 4)
=0

Fig 13

» A bomb 4t rest suddenly explodes into various smaller
fragments, all moving in different directions. Since the
explosive forces are internal and there is no external force
on the system for explosion, the centre of mass of the bomb
will remain at the original position and the fragments fly
such that their net momentum remains zero.

» Two men standing on a frictionless platform push
each other, then also their net momentum remains zero
because the push forces are internal for the two-man
system.

Y

A boat floating in a lake also has the net momentum zero
if the people on it change their positions, because the

friction force required to move the people is internal of
the boat system.

» Objects, initially at rest, if moving under mutual forces
(electrostatic cr gravitation) also have net momentum
ZETO. '

» A light spring of spring constant k is kept compressed
between two blocks of masses m and m, on a smooth
horizontal surface. When released, the blocks acquire
velocities in opposite directions, such that the met
momentum is zero.

» Centre of mass in motion: An axe is thrown at some
angle with horizontal. Centre of mass of axe will move
in such a way that if all the mg force acts on itself, So -
centre of mass will move in a‘parabolic path, however
the whole motion of the axé will be complicated.

—
’ %

&o—

)
! 3

R ™
The motion of the axe is compllcaied
but the CM is moving in a
parabolic motion.

4
S

Fig. 1.14

L A projectile is fired at a speed of
100 m/s at an angle of 37" above the horizontal. At the
highest point, the projectile breaks into two parts of mass
ratio 1:3, the smaller coming to rest. Find the distance
from the launching point to the point where the heavier
piece lands.

Sol. Internal forces do not affect the motion of the centre of
mass, the centre of mass hits the ground at a position where
the original projectile would have landed. The range of the
original projectile is

_ 2u’sinfcosb
Tem ™ g B 10




The centre of mass will hit the ground at this position. As
the smaller block comes to rest after breaking, it falls down
vertically and hits the ground at half of the range, i.e., at x
=480 m, If the heavier block hits the ground at x,, then

mx +mx, - (m) (480) + (3m)(x,)
Xem™ m +m, = B (m -+ 3m)
S x= 1120 m

lllu*it't‘dli(m &7 Two balls with masses m = 3 kg and
m, = 5 kg have initial velocities v, =Ys 5 m/s in the
directions shown in Fig. 1.16. They collide at the origin.
(a) Find the velocity of the CM 3 s before the collision.
(b) Find the position of the CM 2 s after the collision.

- m,
z

P ¢t
i

AV,
@ n,

Fig. 1.16
Sol. (a) The given time is of no consequence since v o 18
fixed for all times.
Vi B mzfg

V(:M )= m] + m,

. (3)(=5cos37°) + (5)_{0}_.=

kg = 1.5m/s
mv. +myv,
F. 1 1y 22y
VCM(J’)_ ??? +m_’
3)(~5sin37°)+ (5% 5
£ox B O3
Iar-'-?.jmfs

(?\1
(b) Since the collision occurs at the origin (7 = 0),

- o
¥ +v

w e . -
the position of the CM 2 s later is 7, = 7, o

= vCMr= ~3i+4/ m

Two particles of masses 2 kg and 4 kg are

approachmg towards each other with accelerations 1 m/s’
and 2 m/s’, respectively, on a smooth horizontal surface.
Then find the acceleration of centre of mass of the system
and direction of acceleration of CM.

Sol: The acceleration of CM of the system is given by

Centre of Mass, Conservation of Linear Momentum and Collision 1.7

4+
e 1 al mEGE
s
m2 m2

2x1+4(-2)
2+4

=—1m/s’

:;»aCM-

Aem—

Negative sign indicates that acceleration of CM will be in
the direction of acceleration of 4 kg mass.

e BRR A pulley fixed to the ceiling carried a
thread with bodies of masses m and m, attached to its ends.
The masses of the pulley and the thread are negligible and
friction is absent. Find the acceleration of the centre of
mass of this system.

Fig. 1.17

Sol. Let as assume thatyn, > m . We can see that the masses
have equal and opposite acceleration of the same magnitude.

&

m. +m
G

m

2mm.g
g and tension in string is 7'= m

a=

Taking downward direction as positive, a=-aa,= +a

ma, +m a,

*‘-m = Wk
m +m, ,tm,

(mz—ml)a

Ao =

Substituting for the value of a, we have

“ = m2 = m1 2
cM |\ m, +m, 4

Alternative method:

8

a = ext =(mlg+m2g)_2T= = 2T
oM m tm, m,+m, m,+m,
4m1ng m, — 2
=g -(—m ) (_m_*-W) g (downwards)

‘ation 1. Ii) A log of wood of length / and mass M

is ﬂoatmg on the surface of a river perpendicular to the
banks. One end of the log touches the banks. A man of
mass m standing at the other end walks towards the bank.
Calculate the displacement of the log when he reaches the
nearer end of the log.

Sol. Let PQ be the log of wood. As there is no external force,
the centre of mass of man and the log system remains at rest.
Let the bank of the river be the origin A. Initially, the man is
at point Q.
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Blank

Fig. 1.18
m= mass of man,

Let
M= mass of log,

x = displacement of log w.r.t. ground

(here water)
om0+ M)
X - (initial) = RN
m(x) + M(“zf— + x)
X = (final) = P

. Now, X (initial) = X oy (final)

= mi+ % = mx+ % + Mx
—_ml
= X m+M
Hence, the log moves away from the bank through a
distance of st 3
(m+M)

Alternative method: Displacement of the log = Ax =R
Displacement of the man = .sz =f{-x

Apply mx =mx, = (if centre of mas remains at the
same place)

mb
(m+M)

= Mx=m(l-x) = x =

A plank of ' mass M and length L is at

Tlustration 1.1

rest on a frictionless floor. The top surface of the plank
has friction. At one end of it 2 man of mass m is standing as
shown in Fig. 1.19. If the man walks towards the other end,
find the distance, which the plank moves (a) till the man
reaches the centre of the plank, (b) till the man reaches the
other end of the plank.

m )

| , . : ]
T T iaT
Fig. 1.19

Sol. Method 1: The corresponding situation can be better
explained with the help of Fig. 1.19. Consider the man and the

plank as a system on which no external force is acting. The
centre of mass of the system must remain stationary. The only
interaction force between the man and the plank is the friction
as shown in Fig. 1.19, due to which the man walks along the
plank and the friction on plank would be in opposite direction,
due to which plank moves towards left, such that the centre
of mass of the plank plus man remains at rest. Just before the
motion started, the initial distance of the centre of mass from
the centre of the plank is

mx%+mXO mX%

“m+ M

xc: m-+ M

‘ '(a}

[ YT ] =]
‘ > (c)
XC A' ,
Fig. 1.20

Initiaily, the centre of mass of the system is on line 4.4’ as
shown in Fig. 1.20. During motion of the man, this centre of
mass must remain at this line only. As the man moves towards
right, the plank will move towards left such that centre of
mass remains on A4". Thus, when the man reaches the centre
of the plank, the plank’s centre must also reach the same point
so that the centre of mass is at the same position. Up to this
instant the plank moves by a distance x_. Similarly, when the
man reaches the other end, plank has to move towards left
further by x_to maintain the position of centre of mass,

Method 2: As there is no external force on the system (man
+ plank) and the system is initially at rest, there should not be
movement of centre of mass of the system during the motion

of the man.
—» X, =X
m 3:; s —X
.‘_
Fig. 1.21
The displacement of centre of mass is Ax oy and is given by
mAX |+ MAX
Axcmz m+M @)

= AX = displacement of the man with respect to ground
AX =AX . +A3c'p= (x — X) where A}'; -X

(towards left)



As AX =0, from Eq. (i),

_ m(x-X)- MX  omx
0= mr M X m+ M
L
L o . e
(a) When x = 7, displacement of block X'= =57

=L di __mL_
(b) When x = L, displacement of block X'= "=

I e @®BE An explosion blows a rock into three

parts. Two pieces go off at right angles to each other; 1.0 kg
piece with a velocity of 12 m/s and other 2.0 kg piece with
a velocity of 8 m/s. If the third piece flies off with a velocity
of 40 m/s, compute the mass of the third piece.

Sol. Let m,, m, and m, be the masses of the three pieces.
m,=2.0 kg.
Let v, = 12 m/s, ¥ = 8 m/s, o= 40 m/s. Let 12 and v, be

directed along x-and y-axes, respectively, and v, be directed
as shown.

m = 1.0 kg,

VAV,

I
1
1
I
1
I
v, |
1
I

Fig. 1.22

By the principle of conservation of momentum, initial
momentum is zero. Hence;

along x-axis: 0 = m v, —w, cos ¢

along y-axis: 0 = m,v, —m.V, sin6
, sin 6
my, -+ my, = my;

oS =m.py

13
By squaring and adding, we get

mv C and m.v. =m.v
n v, os 0 ,V, =y

._ 2y + )8y’

m, @0)? =m, = 0.5 kg

Concept Application Exercise 1.1

1. Two children 4 and B of same mass (including their caps)
M are sitting on a sea-saw as shown in Fig. 1.23. Initially,
the beam is horizontal. At once, child B throws away his
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cap (mass M/25) which falls at point O, midpoint of the
left half of the beam, due to this the balance of beam is
disturbed. To balance it again what is the mass m required
to be put at point P on the right half of the beam?

Fig. 1.23

2. Figure 1.24 shows a fixed wedgeson which two blocks of
masses 2 kg and 3 kg are placed on its smooth inclined
surfaces. When the two blocks are released from rest, find
the acceleration of centre of mass of the two blocks.

Fig. 1.24

Qonsider a rectangular plate of dimensions a x b. If the
plate is considered to be made up of four rectangles of

dimensions 23)( %and we now remove one (the lower right)

out of the four rectangles, find the position where the centre
of mass of the remaining system will be.

Fig. 1.25

4." There are two masses m, and m, placed at a distance / apart,
let the centre of mass of this system is at a point named C.
If m, is displaced by /, towards C and m, is displaced by
l, away from C, find the distance from C where the new
centre of mass will be located.

5. Let there are three equal masses situated at the vertices of
an equilateral triangle, as shown in Fig. 1.26. Now particle
A starts with a velocity v, towards line AB, particle B starts
with the velocity v, towards line BC and particle C starts
with velocity v, towards line C4. Find the displacement of
the centre of mass of the three particles 4, B and C after
time r. What would it be if v =v, =v.?
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Fig. 1.26
Figure 1.27 shows a flat car of mass M on a frictionless
road. A small massless wedge is fitted on it as shown. A
small ball of mass m is released from the top of the wedge,
it slides over it and falls in the hole at distance / from the
initial position of the ball. Find the distance the flat car
moves till the ball gets into the hole.

m.‘_"’

M

Fig. 1.27

Figure 1.28 shows two blocks of masses 5 kg and 2 kg
placed on a frictionless surface and connected with a spring.
An external kick gives a velocity of 14 m/s to the heavier
block in the direction of lighter one. Deduce (a) velocity
gained by the centre of mass and (b) the separate velocities
of the two blocks in the centre of mass coordinates just after
the kick.

ske OO0 | 2ke

T rri i nirrrrriridd r iy
Fig. 1.28

Two blocks of masses m; and m, conneeted by a weightless
spring of stiffness k rest on.a smooth horizontal plane as
shown in Fig. 1.29. Block 2 is shifted a small distance x
to the left and then released. Find the velocity of centre of

mass of the system after block 1 breaks off the wall.

m, iy
T iy

Fig. 1.29
Mr. Verma (50 kg) and Mr. Mathur (60 kg) are sitting at
the two extremes of a 4 m long boat (40 kg) standing still
in water. To discuss a mechanics problem, they come to the

middle of the boat. Neglecting friction with water, how far
does the boat move in the water during the process?

AURRERRRSRRNANY

A cart of mass M is at rest on a frictionless horizontal
surface and a pendulum bob of mass m hangs from the roof
of the cart. The string breaks, the bob falls on the floor,
makes several collisions on the floor and finally lands up

in a small slot made on the floor. The horizontal distance
between the string and the slot is L. Find the displacement
of the cart during this process.

l g

Fig. 1.30

11. Find the displacement of the wedge when ‘m’ comes out of

the wedge. There is no friction anywhere.

12. A block of mass m is initially lying on a wedge of mass

M with an angle of inclination 6, as shown in Fig. 1.32.
Calculate thiedisplacement of the wedge when the block is
released and reaches 10 the bottom of the wedge.

D
N\

Fig. 1.32

13. Calculate the displacement of the wedge when the ball

reaches at the bottom of the groove.

s e

m 3
r,

M

FrEERErrrrrrrer i rrreiy

Fig. 133

14. A block is released on the convex surface of a hemispherical

wedge as shown in Fig. 1.34. Determine the displacement of
the wedge when the block reaches the angular position 6.

Fig. 1.34

15. Two masses m and m, are moving with velocities v, and

v,. Find their total kinetic energy in the reference frame of
centre of mass.




16. Figure 1.35 the system is at rest initially with x = 0. A man

and a woman both are initially at the extreme carrier of the
platform. The man and the woman start to move towards
each other. Obtain an expression for the displacement s of
the platform when the two meet in terms of the displacement
x, of the man relative to the platform.

2, m, m,

0\\\\\§
t

B

.

Fig. 1.35

17. A 30 kg projectile moving horizontally with a velocity

= (120 m/s) i explodes into two fragments 4 and B of
masses 12 kg and 18 kg, respectively. Taking point of ex-
plosion as origin and knowing that 3 s later the position of
fragment 4 is (300 m, 24 m, —48 m), determine the position
of fragment B at the same instant.

18. Two 20 kg cannon balls are chained together and fired

horizontally with a velocity of 200 m/s from the top of a
30 m wall. The chain breaks during the flight of the cannon
balls and one of them strikes the ground at t = 2 5, at a
distance of 250 m from the foot of the wall, and 5 m to the
right of the line of fire. Determine the position of the other
cannon ball at that instant. Neglect the resistance of air.

Fig. 1.36

19.A Jugg!ar juggles three balls ina continueus cyelesAny one

ball is in contact with his hand for me—ﬁﬂh of the time.
Describe the motion of the centreof mass.of the three balls.
What average force does the juggler exert on one ball while
he is touching it? '

20. A cannon and a supply of eannon balls are inside a sealed

rail road car, The cannon fires.to the right, the car recoils
to the left. The canon balls remain in the car after hitting
the far wall. Show that no matter how the cannon balls are
fired, the rail road car cannot travel more than L, assuming
it starts from rest.

Car
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CONSERVATION OF LINEAR MOMENTUM

We were able to solve problems involving these situations
by applying a conservation principle, conservation of
energy. Consider another situation. A 60 kg archer stands
on frictionless ice and fires a 0.50 kg arrow horizontally at
50 m/s. From Newton'’s third law, we know that the force that
the bow exerts on the arrow will be matched by a force in the
opposite direction on the bow (and the archer). This force will
cause the archer to begin to slide backward on the ice. But
with what speed? We cannot answer this question using either
Newton’s second law or an energy approach because there is
not enough information.

Let us conceptualize an isolated system of two particles
(th l. 38) with masses m and m, and moving with velocities
Iaud v. at an instant of nme Because the system is isolated,
the only force on one particle is that from the other particle, and
we can categorize this situation as one in which Newton’s laws
can be applied. If a foree fronrparticle 1 (e.g., a gravitational
force) acts on particle 2, there'must be a second force, equal
in magnitude but Opposite in direction, that particle 2 exerts -
on particle 1. That.is, the forces form a Newton’s third law
actlon—rean:tlon pair so that F =- F2I We can express this
condition asia statement about the system of two particles as
follows:

G
Fig. 1.38

Let us further analyze this situation by incorporating
Newton’s second law. Over some time interval, the interacting
particles in the system will accelerate. Therefore, replacing
each force with ma gives

av, dv

- - 1 2
i o = —_——t =
ma +ma, 0= m o tm 0

If the masses m, and m, are constant, we can bring them
into the derivatives, which gives

dn 7)) d(mz ) d :
pr 5 =0 or a}{mv +mv) =0 ()

Using the definition of momentum, Eq. (i) can be written
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Because, the time derivative of the total system

momentum p =p +p, is zero, we conclude that the total

-
momentum Py must remain constant:

-

P, — constant (ii)
or equivalently,
Pyt Py= Pyt Py, (iii)

— - - -
where p, and p, are initial values and p, ” and p, , are final
values of the momentum during 'a period over which the
particles interact. Equation (iii) in component form states that
the momentum components of the isolated system in the x, y
and z directions are all independently constant; that is,

SoEcYr B30 Y=Y 4%

system system  system system  ‘system system

This result, known as the law of conservation of linear
momentum, is the mathematical representation of momentum
version of the isolated system model. It is considered one of
the most important laws of mechanics. We have generated this
law for a system of two interacting particles, but it can be
shown to be true for a system of any number of particles. We
can state it as follows:

The total momentum of an isolated system remains
constant.

Notice that we have made no statement concerning the
nature of the forces acting between members of the system.
The only requirement is that the forces smust be internal to
the system. Therefore, momentum is conserved for an isolated
system regardless of the naturg of xhe iqtef_nal forces, even if
the forces are non-conservative,

As linear . momentum depends on frame of reference,
observers in different frames would find different values of
linear momentum of a given system but each would agree
that his own value of linear momentum does not change with
time provided the system is isolated and closed, i.e., law of
conservation of linear momentum is independent of the frame
of reference though linear momentum depends on the frame
of reference.

Conservation of linear momentum is equivalent to
Newton’s third law of motion.

This law is universal, i.e., it applies to both macroscopic
and microscopic systems. It holds good even in atomic and

nuclear physics where classical mechanics fails. Further it
is more generally applicable than the law of ‘conservation of
mechanical energy’ because ‘internal forces’ are often non-
conservative and so mechanical energy is not conserved
but momentum is (if Jn'?%I = 0). Principal applications of
conservation of linear momentum are in the field of collisions.

Note: Remember that the momentum of an isolated system is
conserved. The momentum of one particle within an isolated
system is not necessarily conserved because other particles in the
system may be interacting with it. Always apply conservation of
momentum to an isolated system.

1_;1_1_1'_1_5,t__r_-;1ﬁ_q'1_i351,.if{..-. A man of mass m_maoves on a plank of
mass M with a constant velocity « with respect to the plank,
as shown in Fig. 1.39.

(i) If the plank rests on a smooth horizontal surface,
determine the velocity of the plank.

(i) If the man trayvels a distance L with respect to the plank,
find the distance travelled by the plank with respect to
the ground.

M
L

3 >
<+ L >

Fig. 1.39

Sol. As no external forces are acting on the system in horizontal
direction, so its linear momentum remains constant in that
direction. Also there will be no shift in position of centre of
mass, i.e., AxCM =0. '

(i) Let v, and v, be the velocities of the man and the plank
w.r.t. ground. Then, we have

= - -
[vman]plank = [ vman]gmund & [vp!ank]ground
—r > —
Then’ [ ¥ manlgmund_ [ ¥ man]pfank * [ vpla.nk]g.rnund
or
v,
4‘_.

Fig. 1.40

Initially, the system is at rest. Therefore,

0= my, - M"z
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or 0=m(u—-v,)— My,
or y, =2
2 m+M

ii. Letx be the displacement of plank in backward direction,
the displacement of mass is L — x in forward dirction.
M(=x)+m(L—x)

Ax =
e M+m

mL
M+m

= O==Mx+m(L—x) = x=

Il EER A shell is fired from a cannon with a

spezd of 100 m/s at an angle 60° with the horizontal (positive -

x-direction). At the highest point of its trajectory, the shell
explodes into two equal fragments. One of the fragments
moves along the negative x-direction with a speed of 50
m/s. What is the speed of the other fragment at the time of
explosion.

Sol. The velocity of the shell at the highest point of trajectory
is

v, = U Cos @ =100 cos 60° =50 m/s

Let v be the speed of the fragment which moves along
the negative x-direction and the other fragment has speed
Vs which must be along the positive x-direction. Now from
momentum conservation, we have

_—m -
my=-—>5-v + 2 7V 0r2v-v2—vi

it v,= 2y +v, = (2 x 50) + 50 =1 50um/s

A man of mass m is standing at one end

of a boat of mass M and length .. The man walks to the other
end. Whatis the displacement of the céntre of mass? What
is the displacement of boat?

Sok In the process of walking, no external force acts on
the system (boat + man) in the horizontal direction. So
displacement of centre of mass will'be zero. The horizontal
momentum of the system is conserved.

(Since initially the momentum of the system is zero as it was
at rest)

mv MV =0=m(y +‘$)+M$ =0
m b mib b
mvb '
vb=M+m:>I"vhd{ M+m J’ P:rr-‘)dt

=_m
Xy = m+ M%ms
X, = displacement of man relative to boat =/

__ml
Xb_M-l-m

1.13

Two blocks of masses m and m,,
interconnected with a spring of stiffness K, are kept on a
smooth horizontal surface. Find out the ratio of velocity,
displacement and acceleration of block with mass m to

Hiustration 1.16 §

block with mass m,

Sol. Here x is the displacement, v is the speed, p is the
momentum, a is the acceleration, KE is the kinetic energy, F
is the force.

- +—-a
(F:xl}syslem . 0 ::‘Pl pZ_O

v m
mlvl = m2v2=> V =m

; [

m ?[vldr = m, Idet
where [ is the time mtcrval of motion of each block.

X, in2
mx, = myx, == W‘
KE: Pfl'2m| iy
KE, = ?ﬂ-_";’z__ﬁf- (p,=p)
F ‘ '
4. %
- '
where x i8 the deformation of the spring.
F ma a
1 1 1 2
S =1 = = 1l=g=5%5
A ma, 9 M

el GaEE A flat car of mass M is at rest on a
frictionless floor with a child of mass m standing at its edge.
If the child jumps off from the car towards right with an
initial velocity u, with respect to the car, find the velocity

of the car after its jump.

Sol. Let the car attain a velocity v. The net velocity of the child
with respect to the earth will be  — v, as u is its velocity with
respect to the car.

Initially, the system was at rest, thus according to momentum
conservation, momentum after jump must be zero. Hence,

Fig. 1.41

mu

mu-vy=Mv = v = gy v
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. A flat car of mass M with a child of
mass 772 is moving with a velocity v.. The child jumps in the
direction of motion of car with a velocity u with respect to
the car- Find the final velocities of the child and that of the
car after jump.

Sol. This case is similar to the previous example, except now
the car is moving before jump. Here, also no external force is
acting on the system in horizontal direction, hence momentum
remains conserved in this direction. After the jump, car attains
avelocity v, in the same direction, which is less than v , due to
backward push of the child for jumping. After the jump, child
attains a velocity # + v, in the direction of motion of car with
respect to ground.

Fig. 1.42

. According to momentum conservation,
(M+m)v, =My, +m(u+v)

(M+ my, —mu

Velocity of car after jump is Y e
(MAm)v, HMu
Velocity of child after jump is # + v, LM m,

[T As T BBLE Each of the blocks shown in figure has

mass 1 kg The rear block moyes with a speed of 2 m/s
towards the front block kept.at rest. The spring attached
to the front block is light and has a spring constant 50 N/m.

Find the maximum compression of thé spring.

k=

Fig. 1.43

Sol. Maximum compression will take place when the blocks
move with equal velocity. As no net external horizontal
force acts on the system of the two blocks, the total linear
momentum will remain constant. If V' is the common speed at
maximum compression, we have

(1 kg)(2 m/s) = (1 kg) ¥+ (1 kg) Vor V=1 ms.

Initial kinetic energy =+ (1 kg) (2 m/s)* =2 J

Final kinetic energy = » (1 kg) (1 m/s)* + % (A kg

(m/sy=11J

The kinetic energy lost is stored as the elastic energy in
the spring. Hence,

% (50N/m)¥*=2J-1J=1Jorx=02m

IR E L BRAE A light spring of spring constant k i
kept compressed between two blocks of masses m and M
on a smooth horizontal surface. When released, the blocks
acquire velocities in opposite directions. The spring loses
contact with the blocks when it acquires natural length. If
the spring was initially compressed through a distance x, find
the final speeds of the two blocks.

Sel. Consider the two blocks plus the spring to be the system.
No external force acts on this system. in horizontal direction.
Hence, the linear momentum will remain constant. Suppose,
the block of mass M moves with a speed I/ and the other block
with a speed v after losing contact with the spring. From
conservation of linear momenturn in horizontal direction, we
have -
MVamv=Qor V=3 (i)
Initially, the energy of the system =% ko
Finally, the energy of the system = % mv® + % M2
As there is no friction, mechanical ‘energy will remain
conserved. Therefore,
1.2, Lapa_ 1,2 ..
5 my +-2-MV —jkx (i1)
1
Solving Egs. (i) and (ii), we get v=

s ['M‘ (e |%x

-I.lzll l'I'S.‘t-I;':.l.fi.DIi_. §&4l A block of mass m is connected to another

[t

and

block of mass M by a massless spring of spring constant k.
The blocks are kept on a smooth horizontal plane and are at
rest. The spring is unstretched when a constant force F starts
acting on the block of mass M to pull it, Find the maximum
extension of the spring. '

Fig. 1.44

Sol. We solve the situation in the reference frame of centre
of mass. As only F is the external force acting on the system,
due to this force, the acceleration of the centre of mass is
F/(M + m). Thus, with respect to centre of mass, there is a
pseudoforce on the two masses in the opposite direction, the
free body diagram of m and M with respect to centre of mass
(taking centre of mass at rest) is shown in Fig. 1.45.
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_MFE.
_mF_ m+M
i R
= M
Fig, 145

Taking centre of mass at rest, if m moves maximum by
a distance x and M moves maximum by a distance x, then
the work done by external forces (including pseudoforce)
will be

W=

mﬁFM &k (F_ ;nﬂ-{F—M) *

F
m’i M (xl K x2)
This work is stored in the form of potential energy of the
spring as U= (1/2) k (x, + x,)".

Thus, on equating we get the maximum extension in the
spring, as after this instant the spring starts contracting.

1 mF
Ek(x|+xz)2=m+M(x|+xz)
_ __ 2mF
=2 o™ J':l"”c_z_14:\(m+1’¢4')

___( Concept Application Exercise 1.2 ]._

1. A bomb, initially at rest, explodes into several pieces. (a).
Is linear momentum of the system conserved? (b) Is kinetie"
energy of the system conserved? Explain.

2. You are standing perfectly still and then you take a step
forward. Before the step your momentum was zere, but
afterward you have some momentum. I§ the principle of
conservation of momentum violated in this case?

3. Does the centre of mass of a rocket in free space accelerate?
Explain. Can the speed of a rocket exceed the exhaust speed
of the fuel? Explain.

4. Discuss the possibility of conservation of linear momentum
of a block moving on a rough inelined plane if ¢ = tan 6.

Fig. 1.46

5. A shell is fired from a cannon with a speed of 100 m/s at
an angle 30° with the vertical (y-direction). At the highest
point of its trajectory, the shell explodes into two fragments
of masses in the ratio 1:2. The lighter fragment moves ver-
tically upwards with an initial speed of 200 m/s. What is the
speed of the heavier fragment at the time of explosion?

6.

1.15

Figure 1.47 shows a block 4 of mass 6 m having a smooth
semicircular groove of radius a placed on a smooth
horizontal surface. A block B of mass m is released from a
position in groove where its radius is horizontal. Find the
speed of the bigger block when the smaller block reaches
its bottommost position.

_ B

Fig. 1.47

Two friends 4 and B (each weighing'40 kg) are sitting on a

frictionless platform some distance o apart. 4 rolls a ball of

mass 4 kg on the platform towards B which B catches. Then

B rolls the ball towards A and Ascatches it. The ball keeps

on moving back'and forth between A and B. The ball has a

fixed speed of 5 m/s onthe platform.

a. Find the'speed of 4 after he rolls the ball for the first
time.

b. Find the speed of 4 after he catches the ball for the first-
time.

¢. Find the speed of 4 and B after the ball has made five
round trips and is held by 4.

d. How many times can 4 roll the ball?

€, Where is the centre of mass of the system 4 + B + ball

at the end of the nth trip?

A smooth wedge of mass M rests on a smooth horizontal
surface. A block of mass m is projected from its lowermost
point with velocity v o What is the maximum height reached
by the block?

Fig. 1.48

Two identical buggies 1 and 2 with one man in each
move along parallel rails. When the buggies are opposite
to each other, the men jump in a direction perpendicular
to the direction of motion of buggies, so as to exchange
their places. As a consequence, buggy 1 stops and buggy 2
keeps moving in the same direction with its final velocity
v. Find the initial velocities v, and v, of buggies. Mass of
each buggy (without man) equals M, mass of each man is
m; ignore frictional effects anywhere and the buggies are
constrained to move along the rails only.
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Buggy |

=
A

( Buggy 2)

v av
=K
Top view of buggies
Fig. 1.49

10. In Fig. 1.50 a man stands on a boat floating in still water.
The mass of the man and the boat is 60 kg and 120 kg,
respectively.

Fig. 1.50

a. Ifthe man walks to the front of the boat and stops, what
is the separation between the boat and the pier now?

b. Ifthe man moves al a constant speed of 3 m/s relative to
the boat, what is the total kinetic energy of the system
(boat + man)? Compare this energy with the kinetic en-
ergy of the system if the boat was tied to the pier.

11. Two blocks of masses m =2 kg and m, =5 kg are moving
‘in the same direction along a fnctionless surface with
speeds 10 m/s and 3 nv/s, respectively, m, being ahead of
m . An ideal spring with & = 1120 N/m 15 attached torthe
back side of m,. Find the maximum compression ‘of the
spring when the ‘blocks collide. What are the final velocities
of the blocks when they separarate?

110 m/s 3an/s
Cmy —p []_QLIIJQ,_ my —p

Fig: 1.51

12. An 80 kg boy and his 40 kg sister. both wearing roller
blades, face each other at rest. The girl pushes the boy hard,
sending him backward with velocity 3.0 m/s towards the
west. Ignore friction. (a) Describe the subsequent motion of
the girl. (b) How much chemical energy is converted into
mechanical energy in the girl’s muscles? (c) Is the momen-
tum of the boy—girl system conserved in the pushing apart
process? How can it be with no motion beforehand and
plenty of motion afterward?

13. Two blocks of masses M and 3M are placed on a horizontal,
frictionless surface. A light spring is attached to one of
them and the blocks are pushed together with the spring
between them. A cord initially holding the blocks together
is burned; after that, the block of mass 3M moves to the
right with a speed of 2.00 m/s. (a) What is the velocity of
the block of mass M. (b) Find the system’s original elastic
potential energy, taking M = 0.350 kg. (c} Is the original

energy in the spring or in the cord? Explain your answer.
(d) Is momentum of the system conserved in the bursting
apart process? How can it be with large forces acting? How
can it be with no motion beforehand and plenty of motion
afterward?

Fig. 1.52
14. A pendulum bob of mass 107 kg is raised to a height
5% 107 m and then yeleaseds At the bottom of its swing, it
picks up a mass 107 kg. To what height will the combined
mass rise? :

LU

Fig. 1.53

15. A rifle man, who together with his rifle has a mass of
100 kg, stands on a smooth surface and fires 10 shots
horizontally. Each bullet has a mass 10 g and a muzzle
velocity of 800 m/s.

a. What velocity does the rifle man acquire at the end of
10 shots?

b. If the shots are fired in 10 s, what will be the average
force exerted on him?

¢. Compare his kinetic energy with that of 10 bullets.

16. A projectile of mass 50 kg is shot vertically upwards with
an initial velocity of 100 m/s. After 5 s, it explodes into two
fragments, one of which having a mass of 20 kg travels
vertically up with a velocity of 150 m/s.

a.  What is the velocity of the other fragment at that instant?
b. Calculate the sum of momenta of fragments 3 s after the
explosion. What would have been the momentum of the
projectile at this instant if there had been no explosion?
17.a. A rail road flat car of mass M can roll without friction
along a straight horizontal track (Fig. 1.54). Initially, a
man of mass m is standing on the car which is moving
to the right with speed v, What is the change in
velocity of the car if the man runs to the left so that his
speed relative to the car is v just before he jumps off
at the left end? #




Fig. 1.54

b. If there are » men each of mass m on the car, should
they all run and jump off together or should they run
and jump one by one in order to give a greater velocity
to the car?

A rail road car of mass M is moving without friction
on a straight horizontal track with a velocity ». A man
of mass m lands on it normally from a helicopter. What
will be the new velocity of the car?

ii. Ifnow the man begins to run on it with speed v  with
respect to car in a direction opposite to motion of the
car, what will be the new velocity of the car?

19. A shell of mass 2 kg moving at a rate of 4 m/s suddenly
explodes into two equal fragments. The fragments go
in directions inclined with the original line of motion
with equal velocities. If the explosion imparts 48 J of
translational kinetic energy to the fragments, find the
velocity and direction of each fragment.

20. A mud ball at rest explodes into three fragments of masses in
the ratio 1:2:1. The two equal masses move with velocities

- 27+ 5] — 6k and 41 + 3] + 2k. Find the velocity of the third
mass.

Fig. 1.55

IMPULSE

Impulse of a force F acting on'a body 1s defined as
J = Fat
= (8
= [Fat=|m = dt = mdv
It is also defined as change in momentum

J=AP (impulse~momentum theorem)

Instantaneous Impulse

There are many occasions when a force acts for such a short
time that the effect is instantaneous, e.g., a bat striking a ball.
In such cases, although the magnitude of the force and the
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time for which it acts may each be unknown, the value of their
product (i.e., impulse) can be known by measuring the initial
and final momenta. Thus, we can write

Fig. 1.56

Regarding the impulse, it is impertant to note that
impulse applied to an object in a given time interval can also
be calculated from the area underthe force=time (F-f) graph

in the same time interval.

~ Pointsito Remember

1. Impulse is a'vector quantity.

2. Dimensionsare [MLT:"].

3. SIunitiskgm/s.

4, Direction is along the change in momentum.

5. Maguitude is equal to area under the F~f graph.

6. J=IFdi=F At

7. Itisnot a property of any particle, but it is a measure of the

degree to which an external force changes the momentum
of the particle.

p3 ' The hero of a stunt film fires 50 g bullets
from a machine gun, each at a speed of 1.0 km/s. If he fires
20 bullets in 4 s, what average force does he exert against the
machine gun during this period?

Sol. The momentum of each bullet = (0.050 kg) (1000 m/s)
=50 kg m/s.

The gun is imparted this much of momentum by each
bullet fired. Thus, the rate of change of momentum of the gun
is (50 kg m/s x 20)/4s =250 N

In order to hold the gun, the hero must exert a force of
250 N against the gun.

Impulsive Force

A force of relatively higher magnitude and acting for relatively
shorter time is called impulsive force.

An impulsive force can change the momentum of a body
in a finite magnitude in a very short time interval.

Impulsive force is a relative term. There is no clear boundary
between an impulsive and a non-impulsive force.
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Noté:_: Usually colliding forces are impulsive in nature.

Since the application time is very small, hence, very little
motion of the particle takes place.

1" . Points to Remember

1. Gravitational force and spring force are always non-
impulsive.

2. Normal, tension and friction are case dependent.

3. An impulsive force can only be balanced by another
impulsive force.

1. Impulsive normal: In case of collision, normal forces at
the surface of collision are always impulsive. .

—

m, NN ™M

v ty

N, mg N, mg

Fig. 1.57
N, is impulsive; Ng is non-impulsive.

In Fig. 1.58, both normals are impulsive.

9.
‘ N,

Fig. 1.58

In Fig. 1.59, N and N, are impulsive; N, isnon-impulsive.

Fig. 1.59

.In Fig. 1.60, both normals are impulsive.

Fig. 1.60

2. Impulsive friction: If the normal between the two objets
is impulsive, then the friction between the two will alsok
impulsive.

Fig. 1.61

In Fig. 1.61, friction at both surfages is impulsive.

N, N,

Fig. 1.62

‘In Fig. 1.62, friction due to N, is non-impulsive and that
duc to NV, is impulsive. i _
3. Impulsive tension: When a string jerks, equal and
opposite tension acts suddenly at each end. Consequently,
equal and opposite impulses act on the bodies attached
with the string in the direction of the string. There are two

cases to be considered.

(a) One end of the string is fixed: The impulse which
acts at the fixed end of the string cannot change the
momentum of the fixed object there. The object
attached to the free end, however, will undergo a
change in momentum in the direction of the string.
The momentum remains Unchanged in a direction
perpendicular to the string where no impulsive forces
act.

(b) Both ends of the string are attached to movable
objects: In this case, equal and opposite impulses
act on the two objects, producing equal and opposite
changes in momentum. The total momentum of the
system, therefore, remains constant, although the
momentum of each individual object is changed in
the direction of the string. However, no impulse acts
perpendicular to the string and the momentum of each
particle in this direction is unchanged.

Note: In case of rod, tension is always impulsive. In case of
spring, tension is always non-impulsive.



Centre of Mass, Conservation of Linear Momentum and Collision

All normal are impulsive but tension
T'is impulsive only for ball 4.

Fig. 1.63

I Tt B wRd A block of mass m and a pan of equal
mass are connected by a string going over a smooth light
pulley. Initially, the system is at rest; then a particle of mass
m falls on the pan and sticks to it. If the particle strikes the
pan with a speed v, find the speed with which the system
moves just after the collision.

m

v

n
Fig. 1.64

Sol. Let the required speed be V. Further, let J  be the impulse

between the particle and the pan and J, be the impulse

imparted to the block and the pan by the string.

Using impulse as the change in momentum, we have the
following equations.

For particle,
J] =mv—mV ' (i)
For pan, )
J=J,=mV (ii)
For block, _
J =ml" (iii)

Solving Egs. (i)—(iii), we get V'= /3.

Jiustratio § Two identical blocks 4 and B, connected

by a massless string, are placed on a frictionless horizontal
plane. A bullet having the same mass, moving with speed

u, strikes block B from behind as shown. If the bullet gets
embedded into block B, then find

(a) the velocity of 4, B, C after collision;

(b) impulse on A4 due to tension in the string;

(¢) impulise on C due to normal force of collision;
(d) impulse on B due to normal force of collision.

1.19

Fig. 1.65

Sol. (a) By conservation of linear momentum, v=u/3.

(b) [Tar 2

ot f355) <=3

(-ve sign indicates left direction)

(@) I(N_T)d‘=INdf—ITdfz*”j:;!=>-de:= 2?‘:”

LTSRN O WEl A ball'of mass 1 kg is attached to an

inextensible string. The ball'is released from the position
‘shown in Fig. 1.66. Find theimpulse imparted by the string
to the ball immediately after the string becomes taut.

Im

Fig. 1.66

Sol. The string will become taut when the particle will fall
through a distance 2 m in downward direction. So the required

impulse: J=mu=1x2x%10x2 =mkgmfs.

2m
u=|2gh

Fig. 1.67

TN ®Id  Two particles A and B of equal mass
m are attached by a string of length 2/ and initially placed
over a smooth horizontal table in the position shown in
Fig. 1.68. Particle B is projected across the table with speed
u perpendicular to AB as shown in the figure. Find the
velocities of each particle after the string becomes taut and
the magnitude of the impulse tension.
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A

B

u

Fig. 1.68

Sol. When the string becomes taut, it can be depicted as in Fig.
1.69. 6=30°

Fig. 1.69

Linear momentum will be conserved in any direction. Letus
conserve the linear momentum in the direction of thread. Then,

mu cos 0= 2 mv

1o b T8 -
= v=sucosf=5u~ a (1)
‘J
L
.
¢ )
Fig. 1.70

From the impulse diagram of 4 (Fig. 1.70),
J= mv::sJ:%muqos.Q'
_ Y B B
y Ul N 4

Velocity of ball B in the direction perpendicular to the
string will remain constant. Hence,

' - =E
vV =usin 0 bl

Hence, net velocity of B is

.

ER R = Vu
Yo (2 ) *0 4 4
(TG0 WBg8 A sphere of mass m slides with velocity v

on a frictionless surface towards a smooth inclined wall as
shown in Fig. 1.71. If the collision with the wall is perfectly
elastic, find (a) the impulse imparted by the wall on the
sphere, (b) the impulse imparted by the floor on the sphere.

and v, =

Fig. 1.71

Sol. As the collision is elastic, so the sphere will rebound with
the same speed after collision.

J, cos 0=1J, ) (i)

—mv+J, sin @ = mv (ii)

Fig. 1.72

Solving Egs. (i)and (ii), we get
&= 2 mvcotf

JI = 2 mv cosec 8

COLLISION OR IMPACT

Collision is an isolated event in which a strong force acts
between two or more bodies for a short time, which results
in change in their velocities. In a collision, a relatively large
force acts on each colliding particle for a relatively short
time. The basic idea of a “collision” is that the motion of the
colliding particles (or of at least one of them) changes rather
abruptly and that we can make a relatively clean separation of
times that are ‘before the collision’ and those that are ‘after
the collision’.

= [t is not necessary that a physical contact takes place in
a collision, e.g.. when an alpha particle (He') ‘collides’
with the nucleus of gold (Au'"’), the force acting between
them being repulsive—the particles may not touch, even
then it may be called a “collision’.

«  When a space probe approaches a large planet, swings
around it, and then continues its course with increased
speed (a slingshot encounter), that too is a collision. The
probe and planet do not actually “touch”, but a collision
does not require contact, and a collision force does not
have to be a force of contact; it can just as easily be a
gravitational force, as in this case.
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N ot.gé :

e I72 a collision, particles may or may not come in physical
contact.

o The duration of collision At is negligible as compared to the
wsual time intervals of observation of motion.

o Ir2 a collision, the effects of external non-impulsive forces such
as gravity are not taken into account as due to small duration of
collision (A1). Average impulsive force responsible for collision

- is much larger than external forces acting on the system.

The collision is, in fact, a redistribution of total momentum
of the particles. Thus, law of conservation of linear momentum
is indispensable in dealing with the phenomenon of collision
between particles.

Line of Impact

The line passing through the common normal to the surfaces
in contact during the impact is called line of impact. The force
during collision acts along this line on both the bodies.

Direction of line of impact can be determined by

(a) -geometry of ‘colliding objects such as spheres, discs,
wedge, etc;
(b) direction of change of momentum.

If one particle is stationary before collision, then the line
of impact will be along its motion after collision.

Classification of Collisions

(a) On the Basis of Line of Impact
(i) Head-on collision: The velocities of the particles are
along the same line before and after the cellision.

(i) Oblique collision: The velocities of the particles are
along different lines before and after the collision.

(b) On the Basis of Energy

(i) Elastic collision: In an elastic collision, the particles
regain their shape and size completely after collision.
That is, no fraction of mechanical energy remains
stored as deformation potential energy in the bodies.
Thus, kinetic energy of a system after collision is
equal to kinetic energy of a system before collision.
Thus, in addition to the linear momentum, kinetic
energy also remains conserved before and after
collision.

(ii) Inelastic collision: In an inelastic collision, the
particles do not regain their shape and size completely
after collision. Some fraction of mechanical energy
is retained by the colliding particles in the form
of deformation potential energy. Thus, the kinetic
energy of the particles no longer remains conserved.
However, in the absence of external forces, law of
conservation of linear momentum still holds good.

(iii) Perfectly inelastic collision: If wvelocity of
separation just after collision becomes zero, then the
collision is perfectly inelastic. Collision is said to be
perfectly inelastic if both the particles stick together
after collision and move with the same velocity.

Note: Actually collision between all real objects is neither
perfectly elastic nor perfectly inelastic, its inelastic in nature.

Illustrations of Line of Impact and Collisions
Based on Line of Impact

(i) Two balls 4 and B are approaching each other such that
their centres are moving along line CD.

. :Line of impact
. and line of motion

Head-on collision

Fig. 1.73

(ii). Two. balls 4 and B are approaching each other such that
their centres are moving along dotted lines as shown in
Fig. 1.74.

Line of motion
of ball 4

Line of motion w~
of ball B =

Line of impact
Oblique collision

Fig. 1.74

(iii) Ball is falling on a stationary wedge.

Line of motion of ball

Line of impact

Oblique collision

Fig. 1.75
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Coeffi cient of Restitution (e)

The coefficient of restitution is defined as the ratio of the
impulses of recovery and deformation of either body.

-Impulse of reformation - -[F,df
e= - =
Impulse of deformation IF; 2

Velocity of separation along line of impact
Velocity of approach along line of impact

The most general expression for coefficient of restitution
is '

Velocity of separation of points of contact along line of impact

€= hVelocity of approach of points of contact along line of impact

£

Illustration for Calculation of e

Two smooth balls 4 and B approach each other such
that their centres are moving along the line CD in the
absence of external impulsive force. Let the velocities of 4

and B just before collision be #, and u,, respectively, and .

the velocities of 4 and B just after collision be v, and v,,
respectively.

Just before collision
u U,
1 ' 2 '

Line of impact

¢ U
Just after collision
Yy N V2 >
o Line of impact
c D
I < W
U vV,

u s o v, —
' a ‘ .
o o

W
Deformation ! Reformation

Fig. 1.77
Since, momentum is conserved for the system.
F =0

ext

+ =(m +myVv=my +

= mu tmu, (m, mz)v my, +my,
i

T, _my tmy,

.".".*]4-1?1»:!2

Impulse of Deformation

= = i)

m, +m,

J,, = change in momentum of any one body during deformation
=my(v—u,) form,

= ml(wv +tu) for m,

Impulse of Reformation
i

R

change in momentum of any one body during
reformation

=m,(v, - v) form,

=m(v-v)form

Impulse of reformation (J,) , —v

e= .
Impulse of déformation (J D) V—i,

= v, Y4
w =

[substitut’i‘nfg-v from Eq. (i)]

. Velocity of separation along line of impact
" Velocity of approach along line of impact

This is also known as Newton’s experimental law.

Note: e is independent of shape and mass of the object but
depends on the material.

The coefficient of restitution is constant for two particular
objects.
(a) Fore=1
=> Impulse of reformation = Impulse of deformation
=> Velocity of separation = Velocity of approach
=> Kinetic energy is conserved
= Elastic collision
(b) Fore=0
= Impulse of reformation = 0
=> Velocity of separation = 0
= Kinetic energy is not conserved
= Perfectly inelastic collision
(c) ForO<e<1
= Impulse of reformation < Impulse of deformation
= Velocity of separation < Velocity of approach
= Kinetic energy is not conserved
= Inelastic collision
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Note:
«  Irz case of contact collisions, e is always less than unify.

*  w,, U, v and v, can be positive, negative or zero.

I,

A ball is projected with a velocity u at

an elevation from a point distance d from a smooth vertical '

wall in 2 plane perpendicular to it. After rebounding from
the wall, it returns to the point.of projection, prove that

u* sin2a = gd(1 + 1/e). Hence, find the maximum distance
d for which the ball can return to the point of projection.

Sol. The only vertical force on the ball is mg throughout its
motion because during impact it experiences a horizontal
force from the wall: We can use

.‘_ =
u, 1—% g 5,
Let ¢ be the total time of flight.
0=usinat— % gt

- £ 2u sina
g

0 d A
Fig. 1.78

Due to impact with the wall at B, the normal component
(i.e., horizontal component) Qf velocity is reversed and
becomes e times.

Horizontal velocity béfore ifapact = i cos a
and horizontal velocity afterimpact = eu cos @

Time taken to reach the wall, r, = dl(u cos &)

and time taken to come back to O from B,
= d/(eu cos a) we have M )

d d 2:: sma
= WCOS¢g | encosg = o’ sin 20 = gd[l * e]
Assin 2a < 1,

g’ 1] eu’
Hl[l+g]_1=>dsrl+e)

1.23

General Equation for Direct Impact

If u,, u, are the velocities before the impact of the masses m,
m, and V), v, are the velocities after the impact, then applying
conscrvatlcm of momentum, we get

+ = 4 aad - —
mau +mu,=mpy my andv —v, =—e(u —u)

- m, mn, m,
—_—>y —ru —_ —
v, Wy
Fig. 1.79

Combining these equations, we get

m —em (1 +emn (1.+eym m_—em
y o= Zu + T 2y s v = +-lrr+ )

v 3 » ; y -

\Com m, m tm, T o prSEm T om, tm

For a perfectly elastic collision, we can substitute e = 1.

Special case: Fore= ]."'an'c'l;:i,'ﬂ"1 =m,=m, we get

Ll and v, =4
i.e., when two particles of equal mass collide elastically and
the collision is head-on, they exchange their velocities, e.g.,

45 03 mls 3 mis 4 mis
m —p -~ m +— m 7
Before collision After collision
v, =0
v=0 2m/s
m 2™ m m —»
Before collision B —
Fig. 1.80

If a body of mass m with initial velocity u strikes on
another identical body but at rest and e is the coefficient of
restitution, then their velocities v, and v, after collision will
be

l-e _ _lte
R R e |

If a ball of mass m falls on ground from a vertical height
h and rebounds with e as coefficient of restitution between
them (Fig. 1.81), then the upward velocity of the ball after nth
collision will be (¢"u) and the maximum height attained by the

ball after nth collision will be (¢™"h).

u=0@h
eh

A o] ] o

Fig. 1.81
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Oblique Collision in Case of Smooth Surfaces

Common Normal (CN)

Force is exerted in CN direction only. Both bodies exert equal
and opposite forces (action and reaction) on each other.

These CN and CT directions have
nothing to do with the directions
of velocity of the two bodies.

Fig. 1.82

Hence, momentum and velocities change accordingly in
CN direction.

Apply ‘e’ (coefficient of restitution) in the CN direction
only.

Common Tangent (CT)

F =0 (in case of smooth surfaces)

F = u » (normal reaction) in case of rough surfaees:

Neither momentum nor velocity changes in CT direction:
PR What will be the angle'of reflegtion in
case of an inelastic collision? and v=7?

Sol. v, =eu, (CN by definition of &)

V= (CT)

|I
V. COS 1= eucos i

vsinr=usin i
Squaring and adding, we get
| 7] X
v=uNsin" [ +e&" cos’ i

Dividing, we get tan r= —g-

-

|

=5 Lr>Li

CN

JHTCIE GO @ RIR 1f a ball strikes with a velocity « it fie

wall which itself is approaching it with a velocity u, then find
the velocity of the ball after collision with the wall.

Sol. As the wall is heavy so after collision it will continueto
move with the same velocity u,. Relative velocity of separation
is equal to relative velocity of approach. Hence,

v, =y, =—e( -u,)
= ¥y —u) <= e[u1 —(- uz)]
= v|=-‘e(a| tu)—u,

In case of perfectly elastic collision, e = 1.
= = —_f = — +
v, U —u,— (u ] 21:2)_

—ive sign indicates backward direction.

H}ustntlonlﬁf A ball drops from a ceiling of a room
and after rebuunding.-t__{,;w;ige"ﬁ;qm the floor reaches a height
equal to half that of the eeiling. Show that the coefficient

of restitution mm

Sol. Let R = height of céiling
= Speed before the first impact = \2gh
=5 Speed after the first impact = e\2gh
The ball comes back for the second impact.
Before the second impact, speed = e \2gh

After the second impact, speed = e’2gh

- : 2 g [Nz g efogh)
Height attained = E—’g = % - == =5 = o

1
== e ==
4 |'_2 .
A particle ‘B’ moving along the dotted line collides with a

rod also in state of motion as shown in Fig. 1.84. The particle
B comes in contact with point C on the rod.

Just before collision

4l

Line of impact

49t
=¥
=

Fig. 1.84

To write down the expression for coefficient of restitution,
e, we first draw the line of impact. Then we resolve the
components of velocities of points of contact of both the bodies
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along line of impact just before and just after the collision.
Then,

v, —V
X

speed v, makmg an angle of incidence ¢ with the normal. The
coeiﬁcnent of restitution is e. Find the speed of the reflected
ball and the angle of reflection of the ball.

Sol. The component of velocity v, along common tangent dir-
ection vosin « will remain unchanged. Let v be the component
along common normal direction after collision. Applying
relative speed of separation = e  (relative speed of approach)
along common normal direction, we get

V=EVOCOS(1

Thus, after collision, components of velocity v' are
v, sin & and ev, cos a.

N

v
V,COS &

l..\_.vr,sincf

(24

v (= ev, Cos @)

VoS

Fig. 1.85

v' = (v, sin a)?% (e 005 @)’
Y, Sin a
tan = &v, eosg

_ lana
= e

and

Note: For elastic collision, e=1.

V=v andf=a

Collision in One Dimension (Head-on)

m, m,

—p 1, —-—-’H;

(a)
Before collision

1.25

m, m,
—pV, —v,
(b)
After collision
Fig. 1.86

u|> Uy, v2>v|

V=Y

=u)e= (v2 - vl)

By momentum conservation, we get

|
2= — =\u
Nl 24'2 ( 1

+ = +
I | i | mzuz L 1 v] m?.vl

Now,
=y + —
v, e(zr1 z;;]

Hence,

mau, +mu

& me{u -

| ‘_r_n-i-mz

mi“l +.mzuz ¥ m!e(ui N “2)

- 1 ml *® m2

Two identical balls are approaching
towards each other on a straight line with velocity 2 m/s
and 4 mfs,.respggj;wely. Find the final velocities, after elastic

collision between them.

vE
2

m —»2m/s 4m/se— m
Fig. 1.87

Sol. The two velocities will be exchanged and the final motion
is the reverse of the initial motion for both.

4mise— m m —»2mis

Fig. 1.88

1ﬂust1atmn134 Three balls 4, B and C of same mass ‘m’
are placed on a frictionless horizontal plane in a straight
line as shown. Ball A is moved with velocity # towards the
middle ball B. If all the collisions are elastic, find the final
velocities of all the balls.

Fig. 1.89

Sol. A collides elastically with B and comes to rest but B starts
moving with velocity u.

00

Fig. 1.96
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A fier a while B collides elastically with C and comes to
rest but C starts moving with velocity .

m mm 1 i
Fig.191

Therefore, final velocities, ¥, =0, V, =0and V = u.

Four identical balls 4, B, C and D are

placed in a line on a frictionless horizontal surface. 4 and
D are moved with the same speed ‘4’ towards the middle as
shown. Assuming elastic collisions, find the final velocities.

@> B © D)
Fig. 1.92

Sol. 4 and D collide elastically with B and C, respectively, and
come to rest but B and C start moving with velocity « towards
each other as shown.

GL@ u u ©‘® |
Fig. 193

B and C collide elastically and exchange their velocities
to move in the opposite directions

@) B> D
Fig. 1.94

Now, B and C collide elastically with Afand\D;
respectively, and come to rest but 4 and D start mov-i_nﬁ with
velocity u away from each other as shown.

Fig.I§S

Therefore, final vciocmcs F‘;—uh—) V =0, V =0and
¥, =u(=).

in opposlte dlrechons collide elastically with velocity 2v and
v, respectively. Find their velocities after collision.

2v :__ m

Fig. 1.96

Sol. Let the final velocities of m and 2m be v, and v,
respectively, as shown in Fig. 1.97.

Vv, o1
! 2m —p

Fig. 1.97
By conservation of momentum, we get
m(2v) + 2m(—v) = m(vl} 5 Zm(vz)
or 0=myv +2mv,
or P 21;2 =0 (1)
and since the collision is elastic, '
v, S 2v—(—v)
or vz—vl"3v (ii)
Solving the above two equations, we get
v,= vand v, =y
That is, mass 2m returns withweloeity v while mass m
returns with velocity 2v in the direction shown in Fig. 1.98.

2v
<« m

v
2m —p

Fig. 1.98

A ball of mass m moving at a speed v

makes a head—on collision with an identical ball at rest.
The kinetic energy of the balls after the collision is 3/4th of
the original. Find the coefficient of restitution.

‘Sol. As we have seen in the above discussion that under the
.given conditions:

mo oy m moy oE i
—» —

Before collision After collision

Fig. 1.99 .

=(1 ;e)vand v3=(l§e) v

‘ L3
Given that Kr" 1 Kf_

1

or %mvf+ % mvi = % (.,l—mv?)

Substituting the values, we get
l+ey, (1-eV_3

(52 +(15%) -3

or(1+e)+(l—-ef’=3o0r2+2¢=3

E
V2

A ball is moving with velocity 2 m/s

T
or e=5ore

tnwsrds a heavy wall moving towards the ball with speed 1
m/s as shown in Fig. 1.100. Assuming collision to be elastic,
find the velocity of the ball immediately after the collision.



2 m/s 1 m/s
—
Fig. 1.100

Sol. The speed of the wall will not change after the collision.
Let v be the velocity of the ball after collision in the direction
shown in Fig. 1.101. Since collision is elastic (¢ = 1),

Speed of separation speed = Speed of approach

or yv—1=2+1lorv=4m/s
2m/s 1 m/s v 1 m/s
—p <+
Before collision After collision
Fig. 1.101

Two balls of masses 2 kg and 4 kg are

moved towards each other with velocities 4 m/s and 2 m/s,
respectively, on a frictionless surface. After colliding, the
2 kg ball returns back with velocity 2 m/s. Then find

(a) velocity of the 4 kg ball after collision

(b) coefficient of restitution e;

(¢) impulse of deformation JD;

(d) maximum potential energy of deformatign;
(e) impulse of reformation J o

Just before collision

(igf3* iy

i

Just aftur colhsmn

Fi'g-.-_l';mz "

Sol. (a) By momentum conservation,
2(4) - 4(2)= 2(-2) + 4(v,)
e =1l m/s
Velocity of separation _ 1~(-2) _3
b) e= i = =28
(b) & Velocity of approach 4-(-2) 6

(¢) At the maximum deformed state, by conservation of

momentum, common velocity is v= 0.
J u)=4[(0~(-2)] =8N's

(d) Potential energy at the maximum deformed state,

= ;nz(v_

U = loss in kinetic energy during deformation

Centre of Mass, Conservation of Linear Momentum and Collision 1.27

or U= (g m+ g mi) = 5m, + m) 7
= (3209 + L a2¢) - @ + 907
=241]
(e) J, I=m2{v2—v)=4(] —-0)=4Ns

alsoJR =eJD=0.5 x8=4Ns

1l Two point parilcles A and B are placed

in lme on a frictionless horizontal plane. If particle 4 (mass
1 kg) is moved with velocity 10 m/s towards stationary
particle B (mass 2 kg) and after collision the two move at

an angle of 45” with the initial dﬁ‘écﬁan of motion, then
find

I kg J0is % 2kg
S ————
A - B
Fig, 1.103

(a) velocities of 4 and B just after collision.
(b) coefficient of restitution.
Sol. The very. first step 10 solve such problems is to find the
line of ifpact which is along the direction of force applied
by 4.on B, resulting the stationary particle B to move. Thus,
by wahchmg the direction of motion of B, line of impact can
be determined. In this case, the line of impact is along the
~direction of motion of B, i.c., 45° with the initial direction of
wmotion of 4.
* (a) Letus apply the principle of conservation of momentum.
Along x-direction:

m ou =mpy, cos 45° + gV, Cos 45°

A A4
or 1(10)—- 1(v, cos 45°) +2(v, cos 45°)
or v, +2v,=10V2 (i)
Along y-direction:
0= my, sin 45° — my, sin 45°
or 0=1(v, sin 45%) - 2(v, sin 45°)
or RS 2-.-’3 (i1)
5 ) ; _ 10 o 3
Solving the two equaticms, V= m/s and Y™ 5 m/s
|
1 .
~ | ™ Vie
N u, : s A
B = T BNO0T T T
i, cos 45° 4 v cos 90° Vg

~

Line of impact Line of impact

Before collision After collision

Fig. 1.104
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_ Velocity of separation along line of impact

(b €

~ Velocity of approach along line of impact
. 5

v,00s90° 5 0 1

10

V2

v -

8

2

u, cos 45°
Hence, P is constant.

AU SRR A bullet of mass 50 g is fired from below

into the bob of mass 450 g of a long simple pendulum as
shown in Fig. 1.105. The bullet remains inside the bob and
the bob rises through a height of 1.8 m. Find the speed of
the buzllet.

AV
Fig. 1.105
Sol. Let the speed of the bullet be v. Let the common velocity

of the bullet and the bob, after the bullet is embedded into
the bob, be V. By the principle of conservation of linear

momentum, _
yo (005ke)v
045kg+005kg 10

The string becomes loose and the bob will go up with a
deceleration of g = 10 m/s*. As it comes to rest at a height.of
1.8 m, using the equation v’ = 1 + 2ax, we get

= 60m/s

_fl'll_j:_iSf‘:_‘:_a",ﬁqn 1§24 A small ball of mass m eollides with a
rough wall having coefficient of frietion x at an angle 6
with the normal to the wall. If after collision the ball moves
with angle & with the normal to the wall and the coefficient
of restitution is ¢, then find the reflected velocity v of the
ball just after collision.

v Rough wall
‘\. m (u)
_____ i
o\’
7
2 7’
/u
m
Fig. 1.106

Sol. mv cos a — [m(— v cos )] = ‘[Nd!

mvsina—musin8=—;¢_[th

v COS
and e = ygo5g = Vvcosa=eucost

U

or mv sin & — nu sin @ =— u (mv cos & + mu-cos 6) (i
From Egs. (i) and (ii), v=—— [sin@—u cos 8 (¢ +1)
sina

Collision in Two Dimensions (Oblique)

1. A pair of equal and opposite impulses act along comman
normal direction. Hence, linear momentum of individual
particles do change along common:. normal direction.
If mass of the colliding particles remains constant
during collision, then we can say that linear velocity of
the individual partieles change during collision in this
direction. )
No component of impulse acts along common tangent
direction. Hen€e, linear momentum or linear velocity
of individual particles (if mass is constant) remains
unchanged along this.direction.

Net impulse on both the particles is zero during collision.
Henee, net’momentum of both the particles remains
conserved before and after collision in any direction.
Definition of coefficient of restitution can be applied along
common normal direction, i.e., along common normal
direction we can apply.

Relative speed of separation = e x (relative speed of
approach)

If the velocities of colliding masses are not linear, then it
is known as oblique collision.

From law of conservation of momentum, we have the
following.

Along x-axis:
mu, cosa+mu, cosf=my cosf +my, cosf,
Along y-axis:

rl
2%

i,
m,

Before impact

1 + | = T + i
mau sin@+mu, sinff=myv sin@ +m.yv, sin 0,

After impact
Fig. 1.107
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For Obligue Impact

When two bodies collide obliquely, their relative velocity,
resolved along their common normal after the impact, is in a
constant ratio to their relative velocity before impact (resolved
along common normal) and is in the opposite direction.

Common normal *
-G{‘% ------ % Co<
Vs
u, Y =
iy
- Fig. 1.108

¥ cosﬂ—v;cosqb _ .
u cosa—azcosﬂ

=V, c0s 6~-v,cosgp = — eu, cos &t —u, cos f)

[jstaticmlaﬁ A ball of mass m makes an elastic
collision with another identical ball at rest. Show that if
the collision is oblique, the bodies go at right angles to each
other after collision.

Sol. Method 1: In head-on elastic collision between two
particles, they exchange their velocities. In this case, the
component of ball 1 along common normal direction, v cos 8,
becomes zero after collision, while that of ball 2 becomes
vcos 0. While the components along common tangent direction
of both the particles remain unchanged. Thus, the components

along common tangent and common normal direction of both.

the balls in tabular form are given in Table 1.1.

1.29

Method 2:  mu = mv, cOS 6‘] +mv, cos 92 (1)
0= my, sin GI +mv, sin 6, (ii)
—é—muz - % my, -+ % mv, (iii)

Squaring and adding Eqs. (i) and (ii), we get
wl = v, + v, +2vv, cos(, +6))

Using Eq. (iif), we have #°= v+

Note:

«  When two identical bodies have an oblique elastic collision,
with one particle at rest before collision, then the two
particles will go in perpendicular directions. '

« - The colliding balls of the same mass in an elastic direct
impact interchange their velocities. «

Two spheres are moving towards each

other. Both have the same radius but their masses are 2 kg
and 4 kg. If the velocities are 4 m/s and 2 m/s, respectively,

and coefficient of restitution is ¢ = 1/3, find
(a) the common velocity along the line of impact;
(b) final velocities along line of impact;
(¢) impulse of deformation;
(d) impulse of reformation;
(e) maximum potential energy of deformation;
(f) loss in kinetic energy due to collision.

Table 1.1 _
Ball | Componentalong common | Component along common
tangent direction normal direction
Before After Before After
collision collision collision collision
vsin @ vsin 6 veosd 0
2 0 0. 0 v cos 0

From Table 1.1 and Fig. 1,109, we see that both the balls
move at right angle after collision with velocities v sin 6 and

veos 0.
# vsinf

v,sin @ &
LY

a ~
~

@ v cos 6

veos After collision

Before collision
Fig. 1.109

~ _Line of impact

Fig. 1.111

(a) By conservation of momentum along line of impact
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I_ine of impact

4 sin 30°

2 sin 30°
Just before collision along line of impact Maximum deformed state
Fig. 1.112
2(4 cos 30°) —4(2 cos 30°) = (2 + 4w
or v =10 (common velocity along line of impact)

(b)

Just after collision along line of impact
' Fig. 1.113

Letv andv, be the final velocities of 4 and B, respectively,
then by conservation of momentum along the line of
impact,
2(4 cos 30°) — 4(2 cos 30°) = 2(v,) + 4(v,)
or O0=v , 2w,
Coefficient of restitution,

_ Velocity of separation along line of impacts

Velocity of approach along line of impact.

-
Ll

4 cos 30° + 2 cos30°

|
or 3=

orv—vi—\@

7 (i)
From the above two equa‘m')ns

=g
e i~
% B m/s and v, NG m/s

(C)Jn=ml(1:_a) 200 —4 cos 30°)=—4v3 N s

4
=3 (—4‘\’_ )=-— ﬁ Ns
(e) Maximum potential energy of deformation is equal to
loss in kinetic energy during deformation up to maximum
deformed state. Hence,

(d) J =2/ =

U=—m (u, cos B)* + lm (u, cos 6)° —2(m +m)v

= % 2(4 cos 309 + 1 x 4(-2 cos 30°) - 1x (2 + 4)0)

orU=18]
(f) Loss in kinetic energy,

AKE = z—m (u, cos 9)2+‘2'm (u, cos 6)
(émvd'%mv]

= 3% 2(4 cos 30°) + £ x 4(-2 cos 30°)
(22 b (]

#ins Two equal sphéres of mass m are in
contact ona .smouth horizontal table. A third identical sphere
impinges symmetrically on them and is. reduced to rest.
Prove thate=2/3 and.ﬁu_d_!:_h&_l_o_ssin KE.

Sol. Let u be the velogity of sphere 4 before impact. As the
spheres are identjcal, the triangle 4BC formed by joining
their centres is equilateral. The spheres B and C will move
in directions 4B and.4 C after impact making an angle of 30°
with the Ongmai line of motion of sphere A.

Lét v be the speed of the other spheres after impact.

Fig. 1.114

From momentum conservation,
mu = mv cos 30° + mv cos 30°
u=v\3 (i)

From Newton’s experimental law, for an oblique collision,
we have to take components along the normal, i.e., along 4B
for spheres 4 and B. Hence,

V—v,=—e(u,

i H,l)

= v—0= —e(0-ucos30°
v= e u cos 30° (ii)

Combining Egs. (1) and (ii), we get e = 2/3.

Loss in KE = ~21- mu* ~ 2 (% mvz)

=g = m (J Y= g mar
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