It has been fully revised and updated for the new A Level specifications for first teaching from September 2020, and is suitable for AQA, OCR, WJEC and Edexcel. The textbook provides plenty of examples and practice questions for consolidation of learning. Additional sections in the textbook provide help with revision and exam technique, practical skills and maths skills.
The **momentum** of an object depends on its **mass** and its **velocity**.

In fact:

\[\text{Momentum} = \text{mass} \times \text{velocity} \quad \text{(kg)} \times \text{(m/s)} \quad \text{or} \quad \text{Momentum} = mv \]

Momentum is a **vector** quantity. It is measured in units of **kg m/s**.

A bicycle of mass 10 kg moving at 5 m/s has a momentum of 50 kg m/s.

Consider a force \(F \) acting on a mass \(m \) for a time \(t \) so that it accelerates from velocity \(u \) to velocity \(v \).

From page 131, acceleration \(a = \frac{v - u}{t} \).

\[\text{:. Newton's Second Law (page 134) is:} \quad F = ma = m \left(\frac{v - u}{t} \right) = \frac{mv - mu}{t} \]

or in words:

\[\text{Force} = \frac{\text{change in momentum}}{\text{time taken for the change}} \quad \text{(N)} = \frac{\text{momentum after} - \text{momentum before}}{\text{time taken for the change}} \]

or, multiplying both sides by time, we get: \(\text{Force} \times \text{time} = \text{change in momentum} \)

Example 1

Consider first a boy kicking a **stone** of mass 1 kg and accelerating it from rest to 10 m/s. Because the stone is rigid, the force of his foot acts for only \(\frac{1}{100} \) second. Calculate this force.

Formula first: \(\text{Force} = \frac{\text{momentum after} - \text{momentum before}}{\text{time taken}} \)
Physics at work: Heat engines

4-stroke petrol engine
A car or motor-bike uses an internal combustion engine. In a petrol engine, the petrol vapour is squeezed and then exploded. The chemical energy of the fuel and air is transferred to kinetic energy (and thermal energy). However it is only about 25% efficient. The 4 steps are:

1 Suck
 The inlet valve is open and the piston is moving down. A mixture of petrol vapour and air is sucked in (or injected under pressure).

2 Squeeze
 The valves close and the piston moves up to squeeze the mixture of petrol and air to about 1/8th of its original volume. So it gets hotter.

3 Bang
 An electric spark from the sparking plug ignites the mixture which burns rapidly and expands, forcing the piston down.

4 Blow
 The exhaust valve is open and the piston is moving up, to push out the waste gases. The cycle then begins again.

Class 12
Brain Map: Geometrical Optics

NEET | JEE Essentials: Semiconductors Devices & Communication Device

Exam Prep -2020

Ace Your Way CBSE : Practices Papers 2020

MPP-9: Atoms and Nuclei

Covering all GCSE specifications, this tried and tested series has been fully updated to match the (9-1) GCSE Physics specifications for first examination in 2020, as well as international specifications. With a focus on science, concepts develop naturally, engaging students and enabling them to get a thorough understanding of Physics.
Jet engine
A jet engine also has 4 stages to transfer energy from a chemical store to a kinetic store.

1. Suck
 1. Air sucked in

2. Squeeze
 2. Air squeezed by compressor fans

3. Burn
 3. Fuel squirted in, burns continuously

4. Blow
 4. Burnt gases blow out of the back like a blowtorch and push the engine forward (they also turn a turbine fan which keeps the compressor fan turning)

Competition Edge
Physics Musing Problem Set 55
JEE Main Practice Paper
NEET Practice Paper
Gear Up for AIIMS
Physics Musing Solution Set 54

Class 11
Class 12
Brain Map: Quantum Theory of Light
CBSE Board Practice Paper
MPP: Monthly Practices Problems

APRIL 2020

Physics Musing Problem Set 57
NEET Practice Paper
JEE Advanced Practice Paper
10 Most Frequently Asked Topics in NEET
JEE Main Practice Paper
Physics Musing Solution Set 56
Brain Map XI - Surface Tension
Brain Map XII - Bohr Atomic Model
Gear Up for AIIMS
BITSAT Practice Paper
You Ask We Answer
CBSE Board Solved Paper 2020
Crossword

MAY 2020

Physics Musing Problem Set 58
NEET Practice Paper
7 Most Frequently Asked Chapters in JEE Advanced
JEE Advanced Practice Paper 2020
Brain Map- Heat Transfer, Class XI
Brain Map -Radioactivity, Class XII
Gear Up for AIIMS 2020
JEE Main Solved Paper 2020
Physics Musing Solution Set 57
BITSAT Practice Paper 2020
MPP (Monthly Practice Paper) Class XI
MPP (Monthly Practice Paper) Class XII
Crossword - Electrostatics Class XII

JUNE 2020

Physics Musing Problem Set 59
Be NEET Ready
Be JEE Ready
NEET Solved Paper 2020
JEE Main Solved Paper 2020
WB JEE Solved Paper 2020
Brain Map
Karnataka Solved Paper 2020
J & K CET Solved Paper 2020
You ask we answer
10 Mind Blowing Olympiad Problems
CBSE Drill (Class XII)
Live Physics
Physics Musing Solution Set 58

Crossword

JULY 2020

Class 11
Focus NEET / JEE - Units and Measurement
Be JEE Ready
Monthly Tune Up – Units and Measurement
CBSE Drill - Physical World, Measurements and Kinematics
Brain Map - Kinematics

Class 12
Focus NEET / JEE 2020 - Electrostatics
CBSE Drill - Current Electricity
Be NEET Ready
Monthly Tune Up- Electrostatics

Competition Edge

Physics Musing Problem Set 60
Success Story - Tejaswini Banbare (NEET 2020, AIR 54)
JEE Advanced Solved Paper 2020
Physics Musing Solution Set 59
Crossword - Current Electricity

Live Physics - Stephen Hawking last paper co-authored with European Research Council grantee Thomas

9
Hertog proposes a new cosmological theory

AUGUST 2020

Class 11

Focus NEET / JEE 2020 KINEMATICS
Be NEET Ready with Exclusive and brain storming MCQs
Monthly Tune Up Kinematics
CBSE Drill Laws of Motion | Work, Energy and Power
Brain Map ELECTROSTATICS

Class 12

Focus NEET / JEE 2020 CURRENT ELECTRICITY
Be JEE Ready with exclusive and brain storming MCQs
CBSE Drill Magnetic Effects of Current and Magnetism
Monthly Tune Up Current Electricity

Competition Edge

Physics Musing Problem Set 61
AMU (Engg.) Solved Paper 2020
Physics Musing Solution Set 60
Live Physics
Crossword
SEPTEMBER 2020

Class 11
Focus NEET / JEE - LAWS OF MOTION, WORK, ENERGY AND POWER
Be JEE Ready with exclusive and brain storming MCQs
CBSE Drill - System of Particles and Rotational Motion, Gravitation
Monthly Tune Up - Laws of Motion, Work, Energy and Power
Brain Map - LAWS OF MOTION

Class 12
Focus NEET / JEE - MAGNETIC EFFECTS OF CURRENT AND MAGNETISM
Be NEET Ready - with Exclusive and brain storming MCQs
CBSE Drill - Electromagnetic Induction, Alternating Current
Monthly Tune Up - Magnetic Effect of Current and Magnetism

Competition Edge
Physics Musing Problem Set 62
JEE Work Outs
Tips Corner - 15 Scientific Way To Learn Faster
Olympiad Problems
Physics Musing Solution Set 61
Live Physics
Crossword

OCTOBER 2020
Class 11
Focus NEET / JEE 2020 - SYSTEM OF PARTICLES AND ROTATIONAL MOTION
Be NEET Ready with Exclusive and brainstorm MCQs
CBSE Drill- Mechanical Properties of Solids | Mechanical Properties of Fluids
Monthly Tune Up - System of Particles and Rotational Motion

Class 12
Focus NEET / JEE 2020 - ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT
Brain Map - CURRENT ELECTRICITY
Be JEE Ready with exclusive and brainstorm MCQs
CBSE Drill - Electromagnetic Waves | Optics
Monthly Tune Up - Electromagnetic Induction and Alternating Current

Competition Edge
Tips Corner - 15 ways to master the art of self-discipline
Physics Musing Problem Set 63
Gear Up for JEE Main 2020
Live Physics
Physics Musing Solution Set 62
Crossword

NOVEMBER 2020

Class 11
Focus NEET / JEE: Gravitation
Be JEE Ready

CBSE Drill: Thermal Properties of Matter | Thermodynamics | Kinetic Theory

Monthly Tune Up: Gravitation

Class 12

Focus NEET / JEE: Electromagnetic Waves and Optics

Brain Map: Work, Energy and Power

Be NEET Ready

CBSE Drill: Dual Nature of Radiation and Matter | Atoms | Nuclei

Monthly Tune Up: Electromagnetic Waves and Optics

Competition Edge

Physics Musing Problem Set 64

Gear Up for JEE Main 2020

Tips Corner

Physics Musing Solution Set 63

Live Physics

Crossword

DECEMBER 2020

Class 11

Focus NEET / JEE: Mechanical Properties of Solids and Fluids

CBSE Drill: Oscillations and Waves

Monthly Tune Up: Mechanical Properties of Solids and Fluids

Brain Map: System of Particles and Rotational Motion

13
Machines transfer energy from one store to another. We know that the total amount of energy put into a machine must equal the total amount of energy output. This is the principle of conservation of energy (see page 102). However, only some of the output energy is useful to us. The rest is wasted energy. This affects the efficiency of the machine.

A car is not very efficient. For every 100 joules of energy (in fuel) that is put into the car, only 25 J appear as useful energy to move the car. The other 75 J is wasted as thermal energy. It is low-grade energy and we cannot use it. The efficiency is calculated by:

\[
\text{Efficiency} = \frac{\text{useful energy output}}{\text{total energy input}} \quad \text{or} \quad \text{Efficiency} = \frac{\text{useful power output}}{\text{total power input}}
\]

Example 1
For this car, the efficiency = \(\frac{25}{100} = 0.25 \) or 25%.

Because of friction in a machine there is always some wasted energy. This means the efficiency is always less than 100%.